
Microsemi Ethernet Board API
(MEBA) Programmers guide

UG1069

User Guide

Rev. 4.3.0
2017-12-15

Confidential

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 2 of 29

1. Introduction
This document is a programmers guide for the MEBA layer. MEBA is an API that
allows the WebStaX application suite to be used on a variety of different boards,
without the need for changing the WebStaX application itself.

Starting from the 4.1.0 release, the WebStaX software stack is using the MEBA layer.
As such, all Microsemi reference boards have a MEBA layer.

As a MEBA layer is needed for all target boards, this guide introduces the MEBA layer,
and how to implement this for a new board.

For more information about the WebStaX package, refer to the [ug1068] document.

Table of Contents
1. Introduction .. 3

1.1. Audience ... 4
1.2. Prerequisites.. 4
1.3. Terminology ... 4

2. MEBA Reference ... 5
2.1. Overview ... 5
2.2. MEBA Initialization... 6

2.2.1. meba_initialize() ... 6
2.2.2. meba_deinitialize() ... 7

2.3. Board capabilities .. 7
2.4. Board reset.. 8
2.5. Port table... 9

2.5.1. MAC Interface ... 10
2.5.2. Port Capabilities.. 10

2.6. Sensor support .. 14
2.7. SFP Support ... 14

2.7.1. SFP I2C access.. 15
2.7.2. SFP insertion state.. 15
2.7.3. SFP detailed state... 15
2.7.4. Port administrative control ... 16

2.8. LED support... 16
2.8.1. Board status LED .. 16
2.8.2. Port status LED ... 17
2.8.3. LED intensity control .. 17

2.9. Fan support.. 18
2.9.1. FAN parameter retrieval ... 18
2.9.2. Fan configuration retrieval.. 18

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 3 of 29

2.10. Interrupt support ... 19
2.10.1. Interrupt event enable.. 19
2.10.2. Interrupt handler .. 19
2.10.3. Interrupt requestor ... 20

2.11. SyncE support ... 20
2.11.1. DPLL Detection ... 20
2.11.2. DPLL SPI Interface .. 20
2.11.3. SyncE Board Graph... 21
2.11.4. Advanced Example of a Board Graph ... 26

3. MEBA Cookbook ... 27
3.1. Adding MEBA Support to a Board. ... 27
3.2. Adding MEBA a library ... 27
3.3. Development workflow.. 28

4. Advanced topics ... 28
4.1. Using board configuration. .. 28

5. References.. 29

1.1. Audience
The intended audience for this document is software developers who need to create a
MEBA layer for a new board.

1.2. Prerequisites
This document assumes the reader possesses the following skills/resources.

1. Fluent in "C".

2. Some knowledge of CMake.

3. MSCC WebStaX source package (version 4.1 or newer) and the corresponding
binary BSP.

4. A target board for running the WebStaX package. The board is expected to have
at least the bootloader running.

1.3. Terminology
Throughout the document the following terms are used.

MEBA API
The "C" language application programming interface defined by the header <mscc/
ethernet/board/api.h> , being part of the Microsemi Switch API. This is located in
the meba/include directory of the Microsemi Switch API source tree.

MEBA user
An application using the MEBA API. This will typically be the WebStaX switch
application.

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 4 of 29

MEBA implementation
An implementation of the MEBA API for one or more specific hardware targets.
The MEBA implementations for the Microsemi reference boards are located in the
meba/src directory of the Microsemi Switch API source tree.

MESA
Microsemi Ethernet Switch API. See [MESA].

application
Another term for MEBA user.

2. MEBA Reference

2.1. Overview
The MEBA layer is typically implemented as a library, with one single exposed symbol
meba_initialize , which is defined in the next section.

The MEBA library can either be linked statically with the application, or it can be
loaded dynamically. The WebStaX application currently load MEBA dynamically, and
has knowledge of which MEBA library to use for a specific board.

All other MEBA entry points are accessed indirectly through the meba_inst_t.api
function pointers. All MEBA entry points have the MEBA instance pointer as the first
parameter.

The MEBA layer will be executing in Linux userspace with the same privileges as
the MEBA user. It will have access to the normal Linux usermode API’s, as well
as to MESA. In addition, the caller export a number of function pointers via the
meba_board_interface_t structure.

The meba_board_interface_t structure defines API’s for the following functions.

• Low-level switch register access

• I2C access (for a specific port)

• Trace output

• Configuration data access

The image below illustrates the overall system architecture. The MEBA Callouts are
the function pointers offered by the application during MEBA initialization.

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 5 of 29

Figure 1. Overall system architecture

2.2. MEBA Initialization
The initialization sequnce for an application using MEBA must perform the following
steps.

1. Use the dlopen() C library call to load the desired MEBA implementation shared
library.

2. Use dlsym() to locate the meba_initialize() .

3. Initialize the MEBA Callouts structure and call the function pointer obtained in the
previous step.

4. The meba_initialize() will now execute, performing the operations as describe in
[meba_initialize()].

5. The meba_initialize() will return a MEBA instance handle. In case of errors, this
handle will be NULL .

6. In case of successful execution, the handle will contain information to instantiate
the MESA API. After MESA instantiation, both layers are operational. Specifically,
the meba_port_entry_get() API can be used to establish a port map for MESA.

7. Should the application wish to perform graceful shutdown, the
meba_deinitialize() can be used before exiting.

2.2.1. meba_initialize()
As described previously, this API is the only one exposed as a public symbol.

This function has the type meba_initialize_t and is defined as below.

The function must allocate and initialize the instance structure - the callouts are
copied to the allocated instance.

The return value should convey whether the expected hardware is present. During
execution of this function the MESA layer is not (yet) initialized and must not be used.

1 typedeftypedef meba_inst_t (*meba_initialize_t)(size_t callouts_size,
2 constconst meba_board_interface_t *callouts);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 6 of 29

If local state is required by the board implementation, the instance member pointer
inst.private_data may be used to store this.

At the time of returning from this function, the meba_inst_t.props structure must be
initialized in order for the MESA API to be instantiated. This implies initializing:

• Board name - textual representation of the target system

• Target chip (the MSCC switch 4-digit hexadecimal chip number)

• mux_mode (depending on target)

It is allowed that a specific board does not support all the features that the MEBA
API defines. As such, a MEBA API function pointer may be set as NULL . This implies
that the corresponding functionality is not available on the board in question. I.e. if a
board does not support SFP’s, the function pointers for SFP functions can simply be
left NULL . Other non-NULL MEBA API’s should be hooked up in the meba_inst_t.api
in this function.


If a MEBA implementation support more than one board type, the
appropriate board must be determined before returning from this
function. This may involve direct access to chip registers via the
meba_board_interface_t register access functions.

2.2.2. meba_deinitialize()

The function must de-allocate the board instance and any other resources. Where
required, the board hardware may also be brought to a given state.

2.3. Board capabilities

This function retrieve the board capabilities. The individual capabilities that can be
queried are:

MEBA_CAP_POE Power Over Ethernet

MEBA_CAP_1588_CLK_ADJ_DAC AD5667 DAC used to Adjust the
1588 ref clock

MEBA_CAP_1588_REF_CLK_SEL Set 1588 ref clock to different
frequencies

MEBA_CAP_TEMP_SENSORS Number of board temperature
sensors

MEBA_CAP_BOARD_PORT_COUNT Number of ports on board

1 typedeftypedef void (*meba_deinitialize_t)(meba_inst_t inst);

1 typedeftypedef uint32_t (*meba_capability_t)(meba_inst_t inst, int cap);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 7 of 29

MEBA_CAP_BOARD_PORT_MAP_COUNT Number of ports in the port map
(may be >
MEBA_CAP_BOARD_PORT_COUNT
if having MEP or Mirror loop ports

MEBA_CAP_LED_MODES Number of alternate (port) LED
modes

MEBA_CAP_DYING_GASP Dying gasp power loss hardware
support

MEBA_CAP_FAN_SUPPORT Fan controller support

MEBA_CAP_LED_DIM_SUPPORT LED dimming support

MEBA_CAP_BOARD_HAS_PCB107_CPLD The PCB107 CPLD design was
originally made specifically for
PCB107 but is now being used as a
general component on other
boards as well

MEBA_CAP_PCB107_CPLD_CS_VIA_MUX Some boards drive CS to PCB107
CPLD via a mux

MEBA_CAP_SYNCE_CLOCK_DPLL DPLL number for the DPLL used
for SYNCE

MEBA_CAP_SYNCE_CLOCK_OUTPUT_CNT Number of clock output
references, including 10G ports,
which must be connected to the
controller outputs

MEBA_CAP_SYNCE_PTP_CLOCK_OUTPUT Clock output used for PTP
independent Phase/Frequency
adjustment

MEBA_CAP_SYNCE_HO_POST_FILTERING_BW Default holdover post filtering

Number of … denotes quantities, other are boolean values (true/false).


This API is mandatory to implement, as it disclose required
information about the target board.

2.4. Board reset
The board reset API will bring certain board components to a well-defined state at
command.

The different reset points are:

1 typedeftypedef mesa_rc (*meba_reset_t)(meba_inst_t inst, meba_reset_point_t reset);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 8 of 29

MEBA_BOARD_INITIALIZE Initialize Board

MEBA_PORT_RESET Global Port Reset

MEBA_PORT_RESET_POST Global Port Post Reset

MEBA_STATUS_LED_INITIALIZE Status LED Initialize

MEBA_PORT_LED_INITIALIZE Port LED Initialize

MEBA_FAN_INITIALIZE Fan Initialize

MEBA_SENSOR_INITIALIZE Sensors Initialize

MEBA_INTERRUPT_INITIALIZE Interrupts Initialize

MEBA_SYNCE_DPLL_INITIALIZE Initialize the SyncE DPLL i.e. setup
dividers, references, monitors etc.

The MEBA implementation may at its discretion perform the reset operations all
under MEBA_BOARD_INITIALIZE , or under the individual reset points. Its the
responsibility of the MEBA user to issue the corresponding MEBA reset before calling
MEBA functions for the associated functionality.

2.5. Port table
The port table entries describe capabilities of the switch ports, as well of how to
control and access these and associated PHY’s.

After the switch API has been instantiated, the switch application will call this
function to retrieve information of how to construct the switch API port map, and to
know what the physical characteristics of the port is.

In the map structure you typically define these members:

chip_port
The physical chip port for the port. -1 if not used.

1 typedeftypedef structstruct {
2 mesa_port_map_t map; /**< Port map */
3 mesa_port_interface_t mac_if; /**< MAC interface */
4 meba_port_cap_t cap; /**< Port capabilities */
5 mesa_chip_no_t poe_chip_port; /**< Chip port number (may be

different than poe channel number) */
6 mesa_bool_t poe_support; /**< PoE support for this port */
7 } meba_port_entry_t;
8
9 typedeftypedef mesa_rc (*meba_port_entry_get_t)(meba_inst_t inst,

10 mesa_port_no_t port_no,
11 meba_port_entry_t *entry);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 9 of 29

miim_controller
MII management controller (MESA_MIIM_CONTROLLER_NONE for SFP).

miim_addr
If MIIM is used (see above).

2.5.1. MAC Interface
The mac_if value is typically set to one of these values:

MESA_PORT_INTERFACE_SERDES

MESA_PORT_INTERFACE_SGMII

MESA_PORT_INTERFACE_QSGMII

MESA_PORT_INTERFACE_SFI

Refer to [MESA] for details on the referenced MESA types.

2.5.2. Port Capabilities
The cap value reflect the port capabilities, which is defined by these bitmasks:

MEBA_PORT_CAP_NONE 0x00000000 No capabilities

MEBA_PORT_CAP_AUTONEG 0x00000001 Auto negotiation

MEBA_PORT_CAP_10M_HDX 0x00000002 10 Mbps, half
duplex

MEBA_PORT_CAP_10M_FDX 0x00000004 10 Mbps, full
duplex

MEBA_PORT_CAP_100M_HDX 0x00000008 100 Mbps, half
duplex

MEBA_PORT_CAP_100M_FDX 0x00000010 100 Mbps, full
duplex

MEBA_PORT_CAP_1G_FDX 0x00000020 1 Gbps, full
duplex

MEBA_PORT_CAP_2_5G_FDX 0x00000040 2.5 Gbps, full
duplex

MEBA_PORT_CAP_5G_FDX 0x00000080 5Gbps, full duplex

MEBA_PORT_CAP_10G_FDX 0x00000100 10Gbps, full
duplex

MEBA_PORT_CAP_FLOW_CTRL 0x00001000 Flow control

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 10 of 29

MEBA_PORT_CAP_COPPER 0x00002000 Copper media

MEBA_PORT_CAP_FIBER 0x00004000 Fiber media

MEBA_PORT_CAP_DUAL_COPPER 0x00008000 Dual media,
copper preferred

MEBA_PORT_CAP_DUAL_FIBER 0x00010000 Dual media, fiber
preferred

MEBA_PORT_CAP_SD_ENABLE 0x00020000 Signal Detect
enabled

MEBA_PORT_CAP_SD_HIGH 0x00040000 Signal Detect
active high

MEBA_PORT_CAP_SD_INTERNAL 0x00080000 Signal Detect
select internal

MEBA_PORT_CAP_XAUI_LANE_FLIP 0x00200000 Flip the XAUI
lanes

MEBA_PORT_CAP_VTSS_10G_PHY 0x00400000 Connected to
VTSS 10G PHY

MEBA_PORT_CAP_SFP_DETECT 0x00800000 Auto detect the
SFP module

MEBA_PORT_CAP_STACKING 0x01000000 Stack port
candidate

MEBA_PORT_CAP_DUAL_SFP_DETECT 0x02000000 Auto detect the
SFP module for
dual media

MEBA_PORT_CAP_SFP_ONLY 0x04000000 SFP only port (not
dual media)

MEBA_PORT_CAP_SERDES_RX_INVERT 0x10000000 Serdes RX signal
is inverted

MEBA_PORT_CAP_SERDES_TX_INVERT 0x20000000 Serdes TX signal
is inverted

MEBA_PORT_CAP_INT_PHY 0x40000000 Connected to
internal PHY

For convenience, these shorthands are defined using the above:

MEBA_PORT_CAP_HDX Half
duplex

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 11 of 29

MEBA_PORT_CAP_TRI_SPEED_FDX Tri-speed
port full
duplex
only

MEBA_PORT_CAP_TRI_SPEED Tri-speed
port, both
full and
half duplex

MEBA_PORT_CAP_1G_PHY 1G PHY
present

MEBA_PORT_CAP_TRI_SPEED_COPPER Tri-speed
port
copper
only

MEBA_PORT_CAP_TRI_SPEED_FIBER Tri-speed
port fiber
only

MEBA_PORT_CAP_TRI_SPEED_DUAL_COPPER Tri-speed
port both
fiber and
copper.
Copper
preferred

MEBA_PORT_CAP_TRI_SPEED_DUAL_FIBER Tri-speed
port both
fiber and
copper.
Fiber
preferred

MEBA_PORT_CAP_ANY_FIBER Any fiber
mode

MEBA_PORT_CAP_SPEED_DUAL_ANY_FIBER_FIXED_SPEED Any fiber
mode, but
auto
detection
not
supported

MEBA_PORT_CAP_SPEED_DUAL_ANY_FIBER Any fiber
mode, auto
detection
supported

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 12 of 29

MEBA_PORT_CAP_TRI_SPEED_DUAL_ANY_FIBER Copper 5
Fiber
mode, auto
detection
supported

MEBA_PORT_CAP_TRI_SPEED_DUAL_ANY_FIBER_FIXED_SFP_SPEED Copper &
Fiber
mode, but
SFP auto
detection
not
supported

MEBA_PORT_CAP_DUAL_FIBER_1000X 1000Base-
X fiber
mode

MEBA_PORT_CAP_SFP_1G SFP fiber
port
100FX/1G
with auto
negotiation
and flow
control

MEBA_PORT_CAP_SFP_2_5G SFP fiber
port
100FX/1G/
2.5G with
auto
negotiation
and flow
control

MEBA_PORT_CAP_SFP_SD_HIGH SFP fiber
port
100FX/1G/
2.5G with
auto
negotiation
and flow
control,
signal
detect high

MEBA_PORT_CAP_2_5G_TRI_SPEED_FDX 100M/1G/
2.5G Tri-
speed port
full duplex
only

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 13 of 29

MEBA_PORT_CAP_2_5G_TRI_SPEED 100M/1G/
2.5G Tri-
speed port,
all full
duplex and
100M half
duplex

MEBA_PORT_CAP_2_5G_TRI_SPEED_COPPER 100M/1G/
2.5G Tri-
speed port
copper
only


This API is mandatory to implement, as it disclose required
information about the target board.

2.6. Sensor support
The MEBA sensor support 2 types of sensors.

• Board temperature sensor (MEBA_CAP_TEMP_SENSORS capability)

• Port temperature sensor (MEBA_CAP_BOARD_PORT_COUNT capability)

Access to the sensor data is handled by a single API with the following signature:

The six parameter is the sensor index for the given type. Upon a successful call, the
value contains the value of the sensor.

 The unit for temperature sensors is in Celsius (signed).

2.7. SFP Support


If the board does not support SFP’s, all API’s in this section can be
omitted.

The support for SFP’s span the following areas.

1 typedeftypedef enumenum {
2 MEBA_SENSOR_PORT_TEMP, /**< Port temperature sensor */
3 MEBA_SENSOR_BOARD_TEMP, /**< Board/chassis temperature sensor */
4 } meba_sensor_t;
5
6 typedeftypedef mesa_rc (*meba_sensor_get_t)(meba_inst_t inst,
7 meba_sensor_t type,
8 int six,
9 int *value);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 14 of 29

• Generic I2C access to a SFP on a given port

• SFP insertion state

• Detailed SFP status

• Port administrative control

2.7.1. SFP I2C access
The generic I2C is implemented by the following MEBA entrypoint.

The I2C transfer can either be handled by MESA or by calling the
meba_inst_t.api.i2c_read/write functions, depending on which I2C controller the
SFP is attached to.

2.7.2. SFP insertion state
SFP insertion state is returned by the following MEBA API.

The present port list will contain all (SFP) ports where a SFP has been detected.

2.7.3. SFP detailed state
SFP detailed state for a specific port is returned by the following MEBA API.

If a port does not support SFP the API should return an error code. Generally, the
API can only be expected to succeed if the port has previously signaled a SFP being
inserted. (See the previous section).

1 typedeftypedef mesa_rc (*meba_sfp_i2c_xfer_t)(meba_inst_t inst,
2 mesa_port_no_t port_no,
3 mesa_bool_t write,
4 uint8_t i2c_addr,
5 uint8_t addr,
6 uint8_t *data,
7 uint8_t cnt,
8 mesa_bool_t word_access);

1 typedeftypedef mesa_rc (*meba_sfp_insertion_status_get_t)(meba_inst_t inst,
2 mesa_port_list_t *present);

1 typedeftypedef structstruct {
2 mesa_bool_t tx_fault; /**< TxFault */
3 mesa_bool_t los; /**< Loss Of Signal */
4 mesa_bool_t present; /**< SFP module present */
5 } meba_sfp_status_t;
6
7 typedeftypedef mesa_rc (*meba_sfp_status_get_t)(meba_inst_t inst,
8 mesa_port_no_t port_no,
9 meba_sfp_status_t *status);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 15 of 29

2.7.4. Port administrative control
In order to control any additional operations necessary when enabling/disabling a
port, such as controlling transmit on an SFP, or port specific operations, the following
MEBA API is defined:

The API should should be called by the application when a port changes
administrative state (being enabled or disabled), and the MEBA implementation
should perform any operations needed to enable/disable the physical interface beyond
what is controlled by normal MESA port control.

2.8. LED support

 Each of the API’s in this section can be omitted on an individual basis.

The LED support in MEBA is defined by the following functions.

• Board status LED

• Port status LED

• LED intensity control

2.8.1. Board status LED
Th API to control board LED’s are defined as follows.

1 typedeftypedef structstruct {
2 mesa_bool_t enable; /**< Admin enable/disable */
3 } meba_port_admin_state_t;
4
5 typedeftypedef mesa_rc (*meba_port_admin_state_set_t)(meba_inst_t inst,
6 mesa_port_no_t port_no,
7 constconst meba_port_admin_state_t
*state);

1 typedeftypedef enumenum {
2 MEBA_LED_TYPE_FRONT, /**< Front LED main state */
3 } meba_led_type_t;
4
5 typedeftypedef enumenum {
6 MEBA_LED_COLOR_OFF, /**< No LED */
7 MEBA_LED_COLOR_GREEN, /**< Green LED */
8 MEBA_LED_COLOR_RED, /**< Red LED */
9 MEBA_LED_COLOR_YELLOW, /**< Yellow LED */

10 MEBA_LED_COLOR_COUNT, /**< Number of LED colors */
11 } meba_led_color_t;
12
13 typedeftypedef mesa_rc (*meba_status_led_set_t)(meba_inst_t inst,
14 meba_led_type_t type,
15 meba_led_color_t color);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 16 of 29

Currently the only board LED supported is MEBA_LED_TYPE_FRONT . Blinking and
alternating different colors should be done by the MEBA user by calling the API at
regular intervals.

If a color is unsupported by the board, the MEBA implementation may choose to
return an error or select an alternate color.

2.8.2. Port status LED
The following MEBA API should be called by the application to update the port LED
state. The application should either update at regular intervals, or when it detects at
change in port state.

The MEBA implementation should update the port LED according to current state. If
it supports visualizing collision counters or other activity data, it can use the counters
provided, as well as other state data provided.

The port LED displayed may also depend on the current port LED mode, if the board
supports this. (The MEBA_CAP_LED_MODES capability) The port LED mode is controlled
by the following MEBA API:

This MEBA API will be called when management operations change the LED mode,
and the MEBA implementation should update the port LED’s to reflect current state.


If MEBA_CAP_LED_MODES is zero or 1, this API should neither be
implemented nor called.

2.8.3. LED intensity control
If the board support LED intensity control (LED dimming), the following API can
be used to control it. The API should only be called if the
MEBA_CAP_LED_DIM_SUPPORT is non-zero.

The API is supposed to control all LED’s capable of dimming (as a whole). The
intensity parameter is a percentage, ranging from 0 to 100.

1 typedeftypedef mesa_rc (*meba_port_led_update_t)(meba_inst_t inst,
2 mesa_port_no_t port_no,
3 constconst mesa_port_status_t *status,
4 constconst mesa_port_counters_t *counters,
5 constconst meba_port_admin_state_t *state);

1 typedeftypedef mesa_rc (*meba_led_mode_set_t)(meba_inst_t inst, uint32_t mode);

1 typedeftypedef mesa_rc (*meba_led_intensity_set_t)(meba_inst_t inst,
2 mesa_phy_led_intensity intensity);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 17 of 29

2.9. Fan support


If the board does not support FAN control, all API’s in this section
can be omitted, and they should be assumed to be available only is
the MEBA_CAP_FAN_SUPPORT capabilty is non-zero.

MEBA fan support specify two API’s:

• Fan parameter retrieval

• Fan configuration retrieval

2.9.1. FAN parameter retrieval
To expose the characteristics of the board FAN, the following API is used.

The application can use this information to spin up, and drive the board fan according
to the fan operational requirements.

2.9.2. Fan configuration retrieval
The fan is assumed to be controlled by MESA. In order to initialize the fan controller,
the MESA fan configuration must be obtained. This MEBA API is designed to provide
the MESA fan configuration structure.


The application can use MESA to configure and control the fan
speed. The meba_fan_param_t data provide guides on how the fan
should be operated. Fan speed control normally is coupled with
temperature sensor support.

1 typedeftypedef structstruct {
2 /** The duration of time to be before going to low level (seconds) */
3 uint8_t start_time;
4
5 /** The level to be at before going to low level (pct) */
6 uint8_t start_level;
7
8 /** The min level supported by fan (pct) */
9 uint8_t min_pwm;

10 } meba_fan_param_t;
11
12 typedeftypedef mesa_rc (*meba_fan_param_get_t)(meba_inst_t inst,
13 meba_fan_param_t *param);

1 typedeftypedef mesa_rc (*meba_fan_conf_get_t)(meba_inst_t inst,
2 mesa_fan_conf_t *conf);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 18 of 29

2.10. Interrupt support


If the board does not support interrupts, all API’s in this section can
be omitted.

Interrupt support use three API’s:

• Interrupt event enable

• Interrupt handler

• Interrupt requestor

The interrupt events are defined by the meba_event_t enumeration. These values
denote the decoded interrupts.

The interrupt events are signalled to the application by the interrupt handler. The
interrupt handler is invoked by the application when a specific interrupt signal -
mesa_irq_t is detected.

The interrupt requestor convey to the application which interrupt signals MEBA
wants to handle (decode). It is the responsibility of the application to configure
interrupts and call the MEBA interrupt when the OS signal the interrupt.

2.10.1. Interrupt event enable
The interrupt enable API is use to enable or disable one specific interrupt event,
for example the MEBA_EVENT_PUSH_BUTTON event. The event is enabled or disabled
at the hardware level. If a specific event is not supported by the particular MEBA
implementation MESA_RC_NOT_IMPLEMENTED should be returned.

2.10.2. Interrupt handler
The interrupt handler must decode all the supported events for a given interrupt
signal as per the following steps.

1. Identify all interrupt events for a given interrupt signal.

2. Disable the interrupt event (source).

3. Determine a possible instance number(s) (port, etc.)

4. Call the event sink signal_notifier , signalling the interrupt event type and (all
possible) instance numbers.

5. If no interrupt sources were seen an error must be returned.

1 typedeftypedef mesa_rc (*meba_event_enable_t)(meba_inst_t inst,
2 meba_event_t event,
3 mesa_bool_t enable);

1 typedeftypedef mesa_rc (*meba_irq_handler_t)(meba_inst_t inst,
2 mesa_irq_t chip_irq,
3 meba_event_signal_t signal_notifier);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 19 of 29

2.10.3. Interrupt requestor
The interrupt requestor API must must return MESA_RC_OK if the interrupt specified
by the chip_irq parameter is handled by the MEBA layer, otherwise
MESA_RC_NOT_IMPLEMENTED .

The application can use the API (at startup) to determine which interrupt signals
should be claimed from the OS.

2.11. SyncE support
The support for SyncE in MEBA is at this time limited to the following functions:

• Detecting if a DPLL is present in the system and in case a DPLL is present also
detecting the type of the DPLL.

• In the case that a DPLL is present and it is controlled via SPI, MEBA supplies a
function for accessing the DPLL via SPI.

• Supplying the application with a graph describing the topology of the SyncE
hardware. The SyncE board graph is read from MEBA by the application which
then uses it for deriving how to set up muxes, dividers, DPLL references etc.

2.11.1. DPLL Detection
For the detection of the DPLL present in the system, MEBA provides the following
function:

This function is called from the synce_dpll module in the application as part of its
initialization. In some cases, the function is also used by MEBA itself to determine
which version of a board graph to return when differences exist for different DPLLs.

If no DPLL is present, the function will return MESA_RC_ERROR.

2.11.2. DPLL SPI Interface
At present, the actual setup and control of the DPLL is done by the application. To
facilitate this MEBA provides the following function for accessing the DPLL via SPI:

Note: In the case of the ServalT built-in DPLL, the DPLL is controlled directly via the
Omega API as in this case the DPLL is not connected via SPI.

1 typedeftypedef mesa_rc (*meba_irq_requested_t)(meba_inst_t inst,
2 mesa_irq_t chip_irq);

1 mesa_rc meba_synce_spi_if_get_dpll_type(meba_inst_t inst,
2 meba_synce_clock_hw_id_t *dpll_type);

1 mesa_rc meba_synce_spi_if_spi_transfer(meba_inst_t inst,
2 uint32_t buflen,
3 constconst uint8_t *tx_data,
4 uint8_t *rx_data);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 20 of 29

2.11.3. SyncE Board Graph
A board graph consists of nodes of various types (e.g. ports, muxes, dplls) connected
to each other by means of edges. See the figure named Serval2 lite SyncE Board
Graph below for an example of a graph for a Serval2 Lite board:

1 2 3 4 5 6 7 8 9 ST

/2 /2

Mgmt
port

DPLL

Switch Mux

Phy
Mux

0 1 2 3 4 5 6 7

0 1

0 1

0 1

0 1 2

12
5

M
H

z

12
5

M
H

z

12
5

M
H

z

12
5

M
H

z

12
5

M
H

z

12
5

M
H

z

16
1.

13
 M

H
z

16
1.

13
 M

H
z

80
.5

65
 M

H
z

80
.5

65
 M

H
z

clk 0 clk 1 clk 2

Figure 2. Serval2 lite SyncE Board Graph

The data types used for specifying the board graph are defined in the file (within the
mesa source tree):

./meba/include/mscc/ethernet/board/api/synce.h

The graph itself (the array synce_graph_elements_serval2_lite_board) is defined in the
file:

./meba/src/servalt/synce.c

Basically, an edge is just a connection from an output of a source node to an input
of a destination node. All edges connecting nodes generally have the same type
(defined by the structure meba_synce_graph_element_t with the type member set to
MEBA_SYNCE_GRAPH_ELEMENT_TYPE_CONNECTION). The src and dst members
specify the start and end points of the edge.

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 21 of 29

A node is characterized by the following features:

• It’s type (represented by the type member of meba_synce_terminal_t)

• It’s device ID (represented by the dev_id member of meba_synce_terminal_t)

• A number of input ports

• A number of output ports

All nodes irrespective of their type are represented by one or more structures of the
type meba_synce_terminal_t (one per input/output terminal of the node).

For each input/output port a seperate meba_synce_terminal_t must be defined with
the idx value representing the port number. For output ports, idx is generally the
port number. For input ports, idx must have the constant MESA_SYNCE_DEV_INPUT
added/OR’ed to the port number to signify that it is an input port.

Some nodes (generally ethernet ports or station clocks) only have a single output port.
Examples of such nodes are the nodes labeled 1 to 9 and ST in the figure named
Serval2 lite SyncE Board Graph above. In the synce.c source file those nodes are:

Other nodes (generally DPLLs) only have inputs. An example of such a node is the
node labeled DPLL in the figure named Serval2 lite SyncE Board Graph above. In the
synce.c source file this corresponds to:

The remaining nodes that have both inputs and outputs are either buffers or muxes.
When more inputs and outputs exist, any input can connect to any output of the same
node. That is, the node can be considered a mux with full connectivity. A buffer can be
considered a special case of mux with only one input and one output.

In cases where a mux has less than full connectivity, this can be modelled using
edges with the type member of meba_synce_graph_element_t set to
MESA_SYNCE_GRAPH_INVALID_CONNECTION. If such an invalid connection is
defined from an input of a node to an output of the same node, the connection will be
considered invalid.

1 #define eth_port_0 MESA_SYNCE_DEV_PORT(0, 0)
2 #define eth_port_1 MESA_SYNCE_DEV_PORT(1, 0)
3 #define eth_port_2 MESA_SYNCE_DEV_PORT(2, 0)
4 #define eth_port_3 MESA_SYNCE_DEV_PORT(3, 0)
5 #define eth_port_4 MESA_SYNCE_DEV_PORT(4, 0)
6 #define eth_port_5 MESA_SYNCE_DEV_PORT(5, 0)
7 #define eth_port_6 MESA_SYNCE_DEV_PORT(6, 0)
8 #define eth_port_7 MESA_SYNCE_DEV_PORT(7, 0)
9 #define station_clock_port_0 MESA_SYNCE_DEV_CLOCK_IN(9, 0)

1 #define dpll_port_0 MESA_SYNCE_DEV_DPLL(500, MESA_SYNCE_DEV_INPUT | 0)
2 #define dpll_port_1 MESA_SYNCE_DEV_DPLL(500, MESA_SYNCE_DEV_INPUT | 1)
3 #define dpll_port_7 MESA_SYNCE_DEV_DPLL(500, MESA_SYNCE_DEV_INPUT | 7)

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 22 of 29

In the synce.c source two muxes are defined. The Phy mux is restricted so the only
connectivity allowed is from input 0 to output 0 and from input 1 to output 1. This
is not expressed in the definition of the Phy mux itself. Rather this is expressed in
the declaration of edges (see further below). In the synce.c source file the Phy Mux is
defined as in the following:

The switch mux that has full connectivity is defined in the synce.c source file as
follows:

The two elements labeled /2 in the board graph figure are "virtual" buffers that do not
actually exist in reality. They have been inserted to make it possible to specify that
the recovered frequency of 161.13 MHz from ports 7 and 8 should be divided by 2 to
make 80.565 MHz before reaching the input of the DPLL.

These virtual buffers are declared as follows in the synce.c file:

1 #define phy_mux_port_in_0 MESA_SYNCE_DEV_MUX_PHY(300, MESA_SYNCE_DEV_INPUT | 0)
2 #define phy_mux_port_in_1 MESA_SYNCE_DEV_MUX_PHY(300, MESA_SYNCE_DEV_INPUT | 1)
3 #define phy_mux_port_out_0 MESA_SYNCE_DEV_MUX_PHY(300, 0)
4 #define phy_mux_port_out_1 MESA_SYNCE_DEV_MUX_PHY(300, 1)

1 #define switch_mux_port_in_0 \
2 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 0)
3 #define switch_mux_port_in_1 \
4 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 1)
5 #define switch_mux_port_in_2 \
6 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 2)
7 #define switch_mux_port_in_3 \
8 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 3)
9 #define switch_mux_port_in_4 \

10 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 4)
11 #define switch_mux_port_in_5 \
12 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 5)
13 #define switch_mux_port_in_6 \
14 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 6)
15 #define switch_mux_port_in_7 \
16 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 7)
17 #define switch_mux_port_in_8 \
18 MESA_SYNCE_DEV_MUX_SWITCH(400, MESA_SYNCE_DEV_INPUT | 8)
19 #define switch_mux_port_out_0 \
20 MESA_SYNCE_DEV_MUX_SWITCH(400, 0)
21 #define switch_mux_port_out_1 \
22 MESA_SYNCE_DEV_MUX_SWITCH(400, 1)

1 #define divider_eth_port_6_in \
2 MESA_SYNCE_DEV_DIVIDER(100, MESA_SYNCE_DEV_INPUT | 0)
3 #define divider_eth_port_6_out \
4 MESA_SYNCE_DEV_DIVIDER(100, 0)
5 #define divider_eth_port_7_in \
6 MESA_SYNCE_DEV_DIVIDER(200, MESA_SYNCE_DEV_INPUT | 0)
7 #define divider_eth_port_7_out \
8 MESA_SYNCE_DEV_DIVIDER(200, 0)

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 23 of 29

This then leads to the board graph array:

The board graph array lists all the edges making up the board graph. The information
that still needs to be specified is the assignment of clocks to the input references of
the DPLL and the frequencies as specified in the graph. This is done by means of a
seperate array of attributes in synce.c as follows:

1 staticstatic constconst meba_synce_graph_element_t
2 synce_graph_elements_serval2_lite_board[] = {
3 // type source destination
4 MESA_SYNCE_GRAPH_CONNECTION(eth_port_0, phy_mux_port_in_0),
5 MESA_SYNCE_GRAPH_CONNECTION(eth_port_1, phy_mux_port_in_1),
6 MESA_SYNCE_GRAPH_CONNECTION(phy_mux_port_out_0, switch_mux_port_in_0),
7 MESA_SYNCE_GRAPH_CONNECTION(phy_mux_port_out_1, switch_mux_port_in_1),
8 MESA_SYNCE_GRAPH_CONNECTION(eth_port_2, switch_mux_port_in_2),
9 MESA_SYNCE_GRAPH_CONNECTION(eth_port_3, switch_mux_port_in_3),

10 MESA_SYNCE_GRAPH_CONNECTION(eth_port_4, switch_mux_port_in_4),
11 MESA_SYNCE_GRAPH_CONNECTION(eth_port_5, switch_mux_port_in_5),
12 MESA_SYNCE_GRAPH_CONNECTION(eth_port_6, divider_eth_port_6_in),
13 MESA_SYNCE_GRAPH_CONNECTION(eth_port_7, divider_eth_port_7_in),
14 MESA_SYNCE_GRAPH_CONNECTION(divider_eth_port_6_out, switch_mux_port_in_6),
15 MESA_SYNCE_GRAPH_CONNECTION(divider_eth_port_7_out, switch_mux_port_in_7),
16 MESA_SYNCE_GRAPH_CONNECTION(switch_mux_port_out_0, dpll_port_0),
17 MESA_SYNCE_GRAPH_CONNECTION(switch_mux_port_out_1, dpll_port_1),
18 MESA_SYNCE_GRAPH_CONNECTION(station_clock_port_0, dpll_port_2),
19 MESA_SYNCE_GRAPH_INVALID_CONNECTION(phy_mux_port_in_0, phy_mux_port_out_1),
20 MESA_SYNCE_GRAPH_INVALID_CONNECTION(phy_mux_port_in_1, phy_mux_port_out_0)
21 };

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 24 of 29

The board graph array and the attributes array are wrapped together in one data
structure defined as:

The application can fetch a pointer to this structure by means of the following
function:

1 staticstatic constconst meba_synce_terminal_attr_t attr_serval2_lite_board[] = {
2 // device attr-type attr-value
3 MESA_SYNCE_ATTR(dpll_port_0, MEBA_ATTR_CLOCK_ID, 1),
4 MESA_SYNCE_ATTR(dpll_port_1, MEBA_ATTR_CLOCK_ID, 2),
5 MESA_SYNCE_ATTR(dpll_port_7, MEBA_ATTR_CLOCK_ID, 3),
6 MESA_SYNCE_ATTR(switch_mux_port_in_6, MEBA_ATTR_FREQ, \
7 MEBA_SYNCE_CLOCK_FREQ_80_565MHZ),
8 MESA_SYNCE_ATTR(switch_mux_port_in_7, MEBA_ATTR_FREQ, \
9 MEBA_SYNCE_CLOCK_FREQ_80_565MHZ),

10 MESA_SYNCE_ATTR(eth_port_0, MEBA_ATTR_FREQ, \
11 MEBA_SYNCE_CLOCK_FREQ_125MHZ),
12 MESA_SYNCE_ATTR(eth_port_1, MEBA_ATTR_FREQ, \
13 MEBA_SYNCE_CLOCK_FREQ_125MHZ),
14 MESA_SYNCE_ATTR(eth_port_2, MEBA_ATTR_FREQ, \
15 MEBA_SYNCE_CLOCK_FREQ_125MHZ),
16 MESA_SYNCE_ATTR(eth_port_3, MEBA_ATTR_FREQ, \
17 MEBA_SYNCE_CLOCK_FREQ_125MHZ),
18 MESA_SYNCE_ATTR(eth_port_4, MEBA_ATTR_FREQ, \
19 MEBA_SYNCE_CLOCK_FREQ_125MHZ),
20 MESA_SYNCE_ATTR(eth_port_5, MEBA_ATTR_FREQ, \
21 MEBA_SYNCE_CLOCK_FREQ_125MHZ),
22 MESA_SYNCE_ATTR(eth_port_6, MEBA_ATTR_FREQ, \
23 MEBA_SYNCE_CLOCK_FREQ_161_13MHZ),
24 MESA_SYNCE_ATTR(eth_port_7, MEBA_ATTR_FREQ, \
25 MEBA_SYNCE_CLOCK_FREQ_161_13MHZ),
26 };

1 /** A data structure for representing the "clock" graph on the board. */
2 typedeftypedef structstruct {
3 /** Number of elements in the graph. */
4 uint32_t graph_length;
5
6 /** Array of graph elements. */
7 constconst meba_synce_graph_element_t *graph;
8
9 /** Number of attributes */

10 uint32_t attr_length;
11
12 /** Array of attribues */
13 constconst meba_synce_terminal_attr_t *attr;
14
15 } meba_synce_graph_t;

1 mesa_rc meba_synce_graph_get(meba_inst_t inst,
2 constconst meba_synce_graph_t **constconst g);

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 25 of 29

2.11.4. Advanced Example of a Board Graph
The figure named Jr2 (24 ports + 4*10GB) SyncE Board Graph below shows a more
advanced example of a graph for a Jaguar2 (24 ports) board:

1 2 29 ST

Mgmt
port

DPLL

Switch MuxPhy
Mux 0

0 1

0 1

0 1 7

12
5

M
H

z

12
5

M
H

z

clk 0 clk 1 clk 2

3 4

2 3

12
5

M
H

z

12
5

M
H

z

5 6

Phy
Mux 1

0 1

0 1

12
5

M
H

z

12
5

M
H

z

7 8

2 3

12
5

M
H

z

12
5

M
H

z

9 10

0 1

12
5

M
H

z

12
5

M
H

z

23

14

12
5

M
H

z

24

15

12
5

M
H

z

25

16

12
5

M
H

z

26 27

17 18
12

5
M

H
z

12
5

M
H

z

28

19

12
5

M
H

z

2 3 4 5 10 11 12 13

0 1

0 1 2 3

161.13
to

125
 MHz

161.13
to

125
 MHz

(1
61

.1
3

M
H

z)

(1
61

.1
3

M
H

z)

(1
61

.1
3

M
H

z)

(1
61

.1
3

M
H

z)

Note: These
elements are
not modelled.
Instead ports
25 to 28 have
a 125 MHz
attribute.

Figure 3. Jr2 (24 ports + 4*10GB) SyncE Board Graph

The graph (the array synce_graph_elements_jr2_24_board) and the associated
attributes (the array attr_jr2_24_board together with either attr_defaults_dpll or
attr_zarlink_dpll) are defined in the file (within the mesa source tree):

Although this graph is larger, has more muxes and more connections, it is actually
quite straight forward to understand. What does need a little bit of explanation though
are the two elements sitting between the ports 2 and 3 of the switch mux and ports
12 and 13 of the board mux.

These two elements are frequency converters that exist on the Jr2 (24 ports) board
in order to convert the recovered clock frequencies from Ethernet ports 25-28 to 125
MHz. These frequency converters are not modelled in the board graph. Rather a 125
MHz frequency attribute has been set on ports 25-28 although these ports are actually
delivering a 161.13 MHz recovered clock.

./meba/src/jr2/synce.c

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 26 of 29

3. MEBA Cookbook

3.1. Adding MEBA Support to a Board.
When adding MEBA support for a new board type, there are generally two different
approaches:

• Change an existing MEBA implementation for a board resembling your own.

• Add a new MEBA implementation.

It is a matter of style personal preferences whether you choose one or the other.
Normally it makes sense to modify an existing MEBA implementation if your board
only is a little different. If there is a bigger difference in features and how the board
works, you will probably be better off by having separate implementations.

If you decide to extend an existing MEBA implementation, you should also consider
whether you:

• Abandon the original board support, i.e. just change the code to only support your
board.

• Add support for your board by extending the code to perform different operations
where needed. This will require the code to keep track of which board it is
operating on. This will require the code to either be able to tell the boards
apart by probing the hardware, or by means of configuration data (See [Using
board configuration]). Examples of both can be seen in the MEBA support for the
Microsemi reference boards.

It should be noted that if you are aiming to support more than one of your own
(similar) boards, you should use the latter approach. And if you design your boards so
they are easy to tell apart, the board probing will be simple to implement. (Notice the
constraint that MESA is not available during the probing - meba_initialize()).

3.2. Adding MEBA a library
If you end up deciding to add a separate, new MEBA implementation file, you will first
need to add this library to the MEBA main CMake build make file.

This file is …/meba/CMakeLists.txt . Around line 50 you will find a line starting with
MEBA_LIB .

Between the parentheses, you should add the name of your board, for example
myname - like below.

This will add a CMake build option called BUILD_MEBA_myname . When you are invoking
the MESA top level build for your target, you can now add a -DBUILD_MEBA_myname=on
argument. This will trigger building your MEBA shared library. (If you are adding this

MEBA_LIB(serval1 caracal jr2 servalt ocelot)

MEBA_LIB(serval1 caracal jr2 servalt ocelot myname)

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 27 of 29

for use by the WebStaX application, the build configuration option Custom/Meba can
be set to the name of your MEBA library, which will cause the above CMake build
option to be enabled.)

3.3. Development workflow
Then adding MEBA support for your board, you can follow the outline below.

1. Decide whether you are starting a new MEBA implementation file - or extending
an existing implementation.

2. If you are adding a new implementation, make the changes described in the
previous section.

3. Create a new directory, src/myname with an empty source file, meba.c . (If you
are using WebStaX, also make use of the Custom/Meba setting in your build
configuration file.)

4. Verify you can build your MEBA library.

5. Extend the empty MEBA file to include the following (use one of the MEBA
libraries for the Microsemi boards as a reference):

a. A meba_initialize function, setting up target switch and the MEBA API
function pointers below:

b. A myname_capability function. Be sure the MEBA_CAP_BOARD_PORT_COUNT value
is accurate.

c. A meba_reset function, handling only the most basic MEBA_BOARD_INITIALIZE
code your board needs.

d. A meba_port_entry_get function, capable of setting up at least some valid port
entries. If your board support different port types, setup only the basic ones to
start with.

6. Ensure the barebone MEBA library compiles.

7. Try getting the MEBA library running on your target system. You can make use of
the debug output function and the T_D() / T_I() etc. macros in your code. With
WebStaX, the MEBA output is controlled by the main.board trace module level.

Once you have the basic port functions running, you can continue adding support for
the complete port map, LED’s, temperature sensors, etc. according to the capabilities
of your board.

If you are implementing synce support, add a separate file for this functional group,
and setup the API group pointer using the meba_synce_get() function. Refer to the
MEBA synce documentation and the reference implemetations.

4. Advanced topics

4.1. Using board configuration.
In some cases, it case be useful to be able to retrieve configuration from the
embodying software application to control features in MEBA. For example your board
could have a feature to use an alternate port table layout, which are not possible to
detect by probing the board hardware.

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 28 of 29

To support this or similar feature, the api.meba_conf_get function can be used
to querying configuration data. The application can then implement access to
configuration values for a specific name. The MEBA library is free to define the
naming, for example "myname.port_cfg" .

The Microsemi MEBA implementations use "target" to define the target API switch
type, and "type" in some cases where a MEBA library support more than one board
type, but probing to distinguish them is not feasible.

When using board configuration, it is recommended to have some sane default values
where possible, since the configuration retreival can fail (return failure).

5. References
[]

ug1070 Microsemi Ethernet Switch API

[]
ug1068 SW Introduction to WebStaX under Linux

[]
AN1163 Linux Customizations

UG1069 - Microsemi Ethernet Board API (MEBA) Programmers guide User Guide

2017-12-15 Confidential Page 29 of 29

	Microsemi Ethernet Board API (MEBA) Programmers guide
	1. Introduction
	1.1. Audience
	1.2. Prerequisites
	1.3. Terminology

	2. MEBA Reference
	2.1. Overview
	2.2. MEBA Initialization
	2.2.1. meba_initialize()
	2.2.2. meba_deinitialize()

	2.3. Board capabilities
	2.4. Board reset
	2.5. Port table
	2.5.1. MAC Interface
	2.5.2. Port Capabilities

	2.6. Sensor support
	2.7. SFP Support
	2.7.1. SFP I2C access
	2.7.2. SFP insertion state
	2.7.3. SFP detailed state
	2.7.4. Port administrative control

	2.8. LED support
	2.8.1. Board status LED
	2.8.2. Port status LED
	2.8.3. LED intensity control

	2.9. Fan support
	2.9.1. FAN parameter retrieval
	2.9.2. Fan configuration retrieval

	2.10. Interrupt support
	2.10.1. Interrupt event enable
	2.10.2. Interrupt handler
	2.10.3. Interrupt requestor

	2.11. SyncE support
	2.11.1. DPLL Detection
	2.11.2. DPLL SPI Interface
	2.11.3. SyncE Board Graph
	2.11.4. Advanced Example of a Board Graph

	3. MEBA Cookbook
	3.1. Adding MEBA Support to a Board.
	3.2. Adding MEBA a library
	3.3. Development workflow

	4. Advanced topics
	4.1. Using board configuration.

	5. References

