
SW Introduction to WebStaX
under Linux

UG1068

User Guide

Rev. 4.3.0
2017-12-15

Confidential



UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 2 of 68



1. Introduction
This document will provide an introduction to the WebStaX Application software
(SW) from a SW developer perspective. The intention of this document is to briefly
cover what new SW developers need to know, if they are to create a product based
on the WebStaX source package. This will include general architecture description,
integration options, development environment, customization, installation, and more.
The purpose of this is to get the new user started, and not to provide an complete
reference.

Starting from the 4.00.01 release, the WebStaX SW stack is running on top of Linux
instead of eCos. This document will only cover the newer generation of WebStaX SW
which is running on Linux.

Table of Contents
1. Introduction ...................................................................................................... 3

1.1. Audience ................................................................................................... 5
1.2. Prerequisites.............................................................................................. 5

2. Component overview ....................................................................................... 5
2.1. BSP ............................................................................................................ 5
2.2. API ............................................................................................................. 6
2.3. Application ................................................................................................ 6
2.4. Boot-loader................................................................................................ 6
2.5. Flash images ............................................................................................. 7

3. Integration options ........................................................................................... 7
3.1. MSCC-Application or API-Only.................................................................... 7
3.2. Internal CPU or External CPU..................................................................... 8

3.2.1. Frame flow with an external CPU........................................................ 8
3.2.1.1. CPU frames over PCI-E................................................................. 8
3.2.1.2. Dedicated NPI port ..................................................................... 8

3.3. MSCC-BSP or custom BSP .......................................................................... 9
4. Brief system architecture ................................................................................. 9

4.1. Frame flow............................................................................................... 10
4.2. System services ...................................................................................... 11
4.3. Boot sequence......................................................................................... 12

4.3.1. Image split........................................................................................ 12
4.3.2. ServiceD as init process .............................................................. 13

5. Installing SW on a target ................................................................................ 13
5.1. Installing SW from scratch - How to flash a board ................................... 13

5.1.1. Flashing the NOR with a flash image ................................................ 14
5.1.2. Bootstrapping ................................................................................... 22

5.2. Upgrading SW from within an existing installation .................................. 24

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 3 of 68



6. Setting up development environment ............................................................ 26
6.1. Using single-target build configuration makefiles.................................... 27
6.2. Using multi-target build configuration makefiles..................................... 27

7. Customizing SW ............................................................................................. 28
7.1. Customizing the BSP ............................................................................... 28

7.1.1. BSP Stages ....................................................................................... 30
7.1.2. Adding a package ............................................................................. 31
7.1.3. Using the new BSP............................................................................ 32

7.2. Customizing the Linux Kernel .................................................................. 33
7.3. Customizing RedBoot .............................................................................. 35

7.3.1. Installing required tools .................................................................... 35
7.3.2. Building RedBoot from sources......................................................... 36
7.3.3. Changing the RedBoot sources......................................................... 37
7.3.4. Installing a new bootloader .............................................................. 37

7.4. Customizing the Application .................................................................... 37
7.4.1. External process ............................................................................... 37
7.4.2. Build configurations.......................................................................... 37

7.4.2.1. Using a build configuration ........................................................ 37
7.4.2.2. Customizing build configurations............................................... 38

7.4.2.2.1. Defining target configurations ............................................ 39
7.4.2.2.2. Customizing MEBA layer ..................................................... 40
7.4.2.2.3. Controlling application modules ......................................... 40
7.4.2.2.4. Customizing preprocessor variables ................................... 41
7.4.2.2.5. Customizing single image configuration makefile .............. 41
7.4.2.2.6. Customizing multi image configuration file ........................ 42

7.4.3. Adding a custom module to the Application ..................................... 42
7.4.3.1. Creating a makefile ................................................................... 42
7.4.3.2. Creating a source directory ....................................................... 43
7.4.3.3. Adding the module to the build ................................................. 44
7.4.3.4. Adding management interfaces ................................................ 47

7.4.3.4.1. ICLI ................................................................................... 48
7.4.3.4.2. Web .................................................................................... 49
7.4.3.4.3. SNMP and JSON-RPC ........................................................... 49

7.4.3.5. Trace system ............................................................................. 55
7.4.3.6. Locking ...................................................................................... 59
7.4.3.7. Frame flow................................................................................. 62

7.4.3.7.1. Frame reception.................................................................. 62
7.4.3.7.2. Frame transmission ............................................................ 64

7.5. Custom flash images ............................................................................... 65

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 4 of 68



8. References...................................................................................................... 68

1.1. Audience
The intended audience for this document is SW developers who need to build and/or
change the WebStaX source code.

1.2. Prerequisites
This document assumes the reader possesses the following skills/resources:

1. Fluent in C/C++ and to some extent Makefiles. HTML/CSS/JS is required to
change the web interface.

2. Root access to a recent Linux development environment, and fairly experienced in
working with a Linux shell.

a. Building new images from the sources (including boot-loader, BSP and
application) requires a 64-bit Linux machine with at least 8GB of RAM, 50GB
of disk space and 4-8 CPU cores. This document uses Ubuntu 16.04LTS as
reference. Ubuntu 14.04LTS is also compatible.

b. Access to a TFTP and/or HTTP server that can be used for SW upgrades.

c. RS232 terminal to access the target (needed to debug without IP connectivity).

3. MSCC APPL source package (version 4.00.01 or newer) and the corresponding
binary BSP. To change the BSP the BSP source package is also needed.

4. A MSCC reference board supported by the 4.x release (new users are advised to
start with a supported reference board and then move to custom boards when the
basic environment is configured correctly).

2. Component overview
The WebStaX SW stack consists of a number of different components. All components
are needed to build a working WebStaX product. This section will give an overview
of the different components and explain what role they fulfil. Projects may need to
change/replace one or more of components to support new board types, customization
and different integration models.

2.1. BSP
The BSP provides almost all third-party components that are needed. This includes
both development tools needed to build the executable and third-party components
needed on target. Example of host tools are: cross-compiler, cmake, linker, automake/
autoconf etc. Example of target components are Linux kernel, libc, net-snmp,
dropbear, busybox etc.

MSCC provides a BSP that is designed and optimized for MSCC reference boards
and the WebStaX application software. The BSP is distributed both as sources and
binaries. The sources are needed for customers who want/need to change the BSP,
while the binary BSP can be used if no changes are required. Building the BSP from
sources can take a fair amount of time (especially if running in a virtual machine or
on old hardware), and MSCC therefore recommends to start out with the binary BSP
and use that until modifications are needed.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 5 of 68




The binary BSP is compiled for the internal CPU (little endian
MIPSr2). If an alternative CPU is being used, then the BSP needs to
be compiled for that CPU.

2.2. API
The API is a library which is used to access the switching/phy hardware. The API is
included as part of the application SW. Customers who are building a product based
on one of the WebStaX variants will automatically be using the API included in the
WebStaX source package.

2.3. Application
The WebStaX product family includes four different application packages: WebStaX ,
SMBStaX , IStaX and CEServices . The four packages have different feature sets, and
different licensing terms. This document will not be focusing a lot on the individual
packages, but it will assume that one of the four packages is being used. When
referring to "MSCC-Application", "application" or "switch application" then it is one
of these four packages. All examples in this document will be using the SMBStaX
packages, but all the procedures covered in this document are the same for all
packages.


Customers may choose not to use the application provided by MSCC,
but instead use an existing application or write their application from
scratch. Such a project will only be using the API, and will need the
dedicated API release. This option is out of scope for this document.

2.4. Boot-loader
The boot-loader provides the first SW that is running at the target when it is powered
on. The boot-loader is responsible for configuring the CPU, memory controller, loading
the Linux kernel into memory and other.

The boot-loader provided by MSCC is based on RedBoot, with a number of patches
applied on top. The boot-loader is being distributed both as binary and source, and
the binary is built for specific reference boards.

Even the boot-loader is made generic, some custom boards may need to update it.
These updates need to be made in the RedBoot sources, and new binaries need to be
created from the sources.


Customers may choose to use alternative boot-loaders, but they will
need to add support for the MFI image format that is being used by
the switch application.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 6 of 68



2.5. Flash images
A flash image is a binary image that may be burned to the NOR flash using a
programmer. The flash images include partition table for the NOR flash, boot-loader,
bring-up image (Linux kernel, stage1 file system, stage2 minimal). A given flash image
may only be used on the specific board it is designed for.

Most flash images are boot-strap images which means that they include a minimal
image that provides just enough functionality to perform a SW upgrade over the
network.



Most reference boards use both the NOR and NAND flash to store the
kernel and root-file system. The NAND flash can not be burned using
a programmer, and the NOR flash is not big enough to include the
full application, which is why a boot-strap image is needed. The boot-
strap image is small enough to fit into the NOR flash and provide
enough functionality to perform a SW upgrade over the network to
a full application ( WebStaX , SMBStaX , IStaX or CEServices ). When
doing a SW upgrade the installation process will split the image and
will utilize both the NOR and NAND flash.

3. Integration options
The WebStaX product family is very flexible, and it offers a number of different
integration options. This section will describe the most common options that should
be considered for new projects.

3.1. MSCC-Application or API-Only
The API is bundled and is part of the switch application packages, but it also exists in
a stand-alone package. Customers can therefore choose to use one of the application
packages that already include the API, or they can choose to go with the stand-alone
API package.

Following is some of the characteristics of a projects based on one of the MSCC-
Application variants vs. API-Only projects:

MSCC-Application
• Provides a complete turnkey-like application with cli/web/snmp management

interfaces.

• Complete high-level JSON-RPC interface.

• Implements many L2/L3 protocols (the set of protocols depend on the variant).

• Proprietary license.

API-Only
• Driver like functionality

◦ Does not implement any protocols and does not perform any network I/O.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 7 of 68



• C-library which must be instantiated by an application.

• Permissive license (MIT).

This document will only focus on projects that use one of the application variants.

3.2. Internal CPU or External CPU
The MSCC switch chips include an internal MIPS CPU, which can be used to run the
switch application, but it is also possible to do a board design that uses an external
CPU instead.

Customers have to choose whether they want to use the internal MIPS CPU, or if
they prefer an external CPU. Arguments for choosing an external CPU is typically that
more CPU resources are needed, or that an alternative CPU architecture is required.
The downside of choosing an external CPU is the cost.

Customers that choose to do a project with an external CPU must also provide the
BSP for the given project. The MSCC source BSP can be adjusted to support most
CPU architectures, or an alternative BSP can be designed from scratch.

3.2.1. Frame flow with an external CPU
Projects using an external CPU need to decide how to implement the frame-flow,
between the switch-core and the host CPU. There are two options: either use PCI-
Express or dedicate (and configure) one of the switch ports as the CPU port. This is
called a NPI (Node Processor Interface) port. This section documents some of the
pros and cons; the details depend on the switch chip and can be found in the data
sheets.

3.2.1.1. CPU frames over PCI-E
Frames can be extracted and injected by reading/writing registers exposed in the
switch core. This register access is typically done over PCI-E but can in theory also be
done using other physical interfaces.

This approach will require a kernel driver (or user-space application using the tun
/ tap facilities) to implement a NIC interface that will read/write from/to the CPU
queue registers. The NIC driver must expose the frames as is, including the internal
frame header. The MUX driver will connect to this NIC interface and decode the ifh
header. An interrupt will indicate when there are frames to be read.

The advantages of this approach is that it is simple, it does not require any dedicated
hardware, and it does not consume one of the switch ports. The downside is that the
frame-flow may affect the CPU performance as the CPU is being used to read/write
the frames.

3.2.1.2. Dedicated NPI port

The switch core can be configured to dedicate one of the switch ports as NPI port.
This means that the frame flow between the CPU and switch-core is a normal ethernet
connection.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 8 of 68




Some chips are in some configurations using the FCS to carry certain
information. This may be an issue if using a dedicated NPI port to
implement the frame flow between switch core and host CPU.

This approach will require that the host CPU has a free MAC interface that can be used
to connect to the NPI port of the switch-core. The MAC interface must be supported
by a Linux NIC driver.

The advantages of this approach is that the performance depends on the host MAC
interface (and the associated driver) which may be better than running over PCI-E.
The downside is that this solution consumes a switch port from the switch core that
cannot be used for anything else, and it requires a free MAC on the host CPU.

3.3. MSCC-BSP or custom BSP
A BSP which provides a tool-chain, host tools, and various target libraries/applications
is required to build the MSCC switch application. MSCC encourages customers to use
the MSCC-BSP as it is designed for and tested with the MSCC Ethernet products. But
customers are welcome to use an alternative BSP or create one from scratch. Typical
arguments for using alternative BSPs are strong preference to other embedded
distributions like Yocto, T2-SDK, Gentoo, etc, or having an existing BSP with support
for an external CPU which is intended for the project.

MSCC is in general not supporting customers in integrating the MSCC application
into custom BSP’s - customers that choose this path must therefore be able to do
this on their own. Customers that choose to design their own BSP need to look at
the MSCC BSP to get the list of packages and patches used by the MSCC switch
application.

4. Brief system architecture
This section will provide a brief overview of the system architecture. The section will
focus on how the MSCC switch application has been integrated with the Linux system,
and on how third-party components may interact. The image below illustrates the
overall system architecture.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 9 of 68



Third-Party applications
used by WebStaX
(snmp/http/ssh)

Third-Party applications
used by WebStaX
(snmp/http/ssh)

FDMA/NIC
Driver MUX-Driver

Eth: ifh Eth: vlan1 Eth: vlan2 Eth: vlanN

WebStaX

MUX-Filter

Third-Party applications
used by WebStaX
(snmp/http/ssh)

Switch HW

/dev/uio

UIO
Driver

USERSPACE

KERNELSPACE

HARDWARE

Ra
w

 F
ra

m
e 

IO
IP/TCP/UDP Connections

pipe/socket
connections

Figure 1. Overall system architecture

The green box labelled WebStaX is the MSCC switch application, it can be any
of the supported variants ( WebStaX , SMBStaX , IStaX or CEServices ). The switch
application is running as a long-lived normal user-space process (as root), and it is
interacting with the switch registers through the uio driver. The WebStaX application
includes an instance of the API, and the application must be the exclusive owner of
the API and switch registers.


This means that no other process is allowed to instantiate the API
and alter the switch registers in HW, this must go through the API
instance already created by the application.

The uio kernel space driver is a simple kernel module which does two things;
1) exposes the entire register region of the switch hardware, and 2) exposes all
interrupts from the switch hw. The uio kernel module is provided by the Linux kernel
(part of the BSP) and allows user-space applications, like WebStaX, to gain access
to HW registers and interrupts from user-space. This is achieved by a mmap of the
register region from the user-space application.

4.1. Frame flow
Besides from configuring the switch registers in HW, the application also implements
a number of protocols (which may influence the switch configurations). To implement
these protocols the application needs to inject frames into the switch core, and it
needs to extract frames that have been redirected to the CPU (either because it was
send to the MAC address of the CPU, or because an ACL rule has captured the frame).
To implement this frame-flow the Linux kernel in the BSP provides a FDMA driver
which can inject/extract to/from the CPU queue in the switching hardware.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 10 of 68




The FDMA driver included in the MSCC BSP only supports the
internal CPU. Projects that uses an external CPU need to provide
a NIC driver that will connect the CPU queue in the switching
hardware with a Linux network interface.

Frames that are injected/extracted to/from the CPU queue are prefixed with an extra
header that carries various side-band information related to the frame (front port,
classified VLAN, ACL rule number, time stamp etc.). The content of the header is
chip dependent and the content is specified in the data sheet of the switching chip.
This information is needed by the application to implement most of the L2 protocols,
but it also causes a problem when the frame is being processed through the Linux
IP stack. To solve this, received frames are being exposed both on a Linux network
interface called ifh (short for interface frame header) and to the MUX-Filter (see
figure Overall system architecture).

The MUX-Filter will see all frames being received by the CPU queue in the switching
hardware. The driver will decode the frame header to see which classified VLAN a
given frame belongs to, and if such an interface exists, then the switch dependent
frame header is popped and the frame is being processed by the Linux IP stack. The
MUX-Filter is configured by the user-space application using the netlink protocol,
and this configuration channel allows the application to dynamically create and delete
IP interfaces that correspond to a VLAN domain. These kinds of interfaces are being
referred to as VLAN interfaces .

A system without any configuration will not have any IP interface, but only the
ifh interface that exposes the raw frames. When a VLAN interface is created, a
corresponding Linux network interface is created by the MUX-Driver .

This design allows the user-space applications to implement various L2 protocols and
have access to all the side-band data collected by the switch-core, and it also allows
existing Linux applications to do various socket operations (IP, UDP and TCP) without
changing these applications.

4.2. System services
The WebStaX application will listen on a number of TCP/UDP ports, and it will spawn
a number of third-party services. The list of TCP/UDP ports and third-party services
depends on the variant ( WebStaX . SMBStaX , IStaX or CEServices ). Examples of
listing ports are TCP port 23 which the application listens on in order to implement
telnet. Examples of third-party services are hiawatha which is being used as web-
server and net-snmp as SNMP master agent.

External services needed by the WebStaX application are automatically started by the
application itself. The application also offers configuration hooks that can stop a given
service if the user does not wish to use it.

More advanced configuration of various system services is covered in [AN1163].

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 11 of 68



4.3. Boot sequence
The boot-sequence of a WebStaX system differs a bit from what is seem in most
general purpose Linux systems. The are two main reasons for these differences: a)
The system starts by booting from NOR and when the kernel is up, it mounts the
NAND flash as its root file system; b) The system uses a custom init process called
ServiceD .

The following illustrates the boot-process of a WebStaX system:

BootloaderNOR-FLASH

NAND-FLASH Linux Kernel

OverlayFSStage2 Loader

ServiceDServiceD Conf
WebStaX

ServiceD Conf
Customer process

ServiceD Conf
Customer process

WebStaX

Customer processCustomer process

FW-Image

SSH SNMP HTTP

Stage 1
Kernel + initrd

New ROOTFS

Pivot ROOT

Stage1

Stage2

ROOTFS-Elements

Figure 2. Boot process

4.3.1. Image split
The image format used in WebStaX is called mfi and it is designed to allow using
both the NOR and NAND flash to store firmware images. Redboot does not have the
required drivers to read from the NAND flash, meaning that the Linux kernel must be
stored in NOR flash. When the kernel is booted, it will run the stage2 loader (also
from NOR ) which will mount the NAND flash, do a pivot_root and use the NAND flash
as the root file system from this point on.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 12 of 68



This design is a bit different from what is seen in many embedded systems where the
entire root file system is placed in the initrd section loaded by the boot-loader. The
reason for this design is that the NAND flash is significantly cheaper than the NOR
flash, and splitting the image into both NOR and NAND will lower the BOM cost.

This means that the actual boot process starts already when the image is being
installed, because the installation process must split the image file and burn the
kernel + initrd section to the NOR flash, and also burn the remaining part to NAND
flash. The SW upgrade facilities, which are part of the MSCC-Application, will take
care of that automatically. This is illustrated at the left side in Boot process image.

When the system is powered on, the boot-loader will initialize the hardware and load
the kernel + initrd into memory, and start the Linux kernel. When the Linux kernel
is up and running, it will look for an executable called stage2-loader (part of the
stage1 part of the BSP) in the initrd area, and invoke that process as PID 1. The
stage2-loader loader will mount the NAND flash, and look for the corresponding
stage2 section of the current firmware image in the NAND . After finding it, it will
iterate through its contents, and mount each root file system element on top of each
other by using the OverlayFS facilities in the Linux kernel. Once this process is
completed, the final root-file system is ready, and the stage2-loader will use the
pivot_root to replace the existing root with the newly prepared root file system.

4.3.2. ServiceD as init process

At this point the final root file system is ready, and the system can start to initialize
all the services that need to be running. The ServiceD application is used to perform
this task. The ServiceD process will read its configuration files (see ServiceD Conf
WebStaX and ServiceD Conf Customer process in Boot process) and spawn (and
monitor) the configured services. In a vanilla WebStaX system there will only exist
one service called switch_app which represents the WebStaX application. When the
application is started it will automatic start the set of services it depends on.

For more details on the mfi format and ServiceD read the [AN1163] document.

5. Installing SW on a target
This section describes how to install SW into a target, whether that is a 'fresh'
installation, i.e. install on a target with an empty NOR device, or a SW upgrade
of an existing installation. The two processes are different, hence they are covered
separately.

5.1. Installing SW from scratch - How to flash a board
If the device has no SW installed in it already, e.g. empty NOR or if a SW upgrade is
not possible (e.g. upgrade from an eCos version to this Linux release), then the device
needs to be flashed with a flash image. Flash images is part of the normal WebStaX
release, and can be used with the reference boards. To build custom flash images see
section: Custom flash images.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 13 of 68



The clean installation is a two step process; first the NOR memory of the device
needs to be flashed with a proper binary image (the flash image) that will bring
the device into a bring-up state with basic network connectivity and then the device
needs to be bootstrapped with the final full application ( WebStaX , SMBStaX , IStaX or
CEServices ).

5.1.1. Flashing the NOR with a flash image
In order to flash the NOR memory of the device, a flash memory programmer is
required. In order to generate the following guidelines and examples, the FORTE
(http://www.asix.net/prg_forte.htm) memory programmer from ASIX (http://www.asix.net/)
was used. Other memory programmers will work as well, but covering their
installation methods is out of the scope of this document.

Things you will need:

• A board as a target

• A flash memory programmer (FORTE (http://www.asix.net/prg_forte.htm) is
recommended, PRESTO (http://www.asix.net/prg_presto.htm) is slower but works too)

• A PC running Windows

• Universal Programmer tool (downloaded from ASIX.net
(http://www.asix.net/dwnld_up.htm)) installed

• Binary flash image for the specific board

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 14 of 68

http://www.asix.net/prg_forte.htm
http://www.asix.net/prg_forte.htm
http://www.asix.net/prg_forte.htm
http://www.asix.net/
http://www.asix.net/
http://www.asix.net/prg_forte.htm
http://www.asix.net/prg_forte.htm
http://www.asix.net/prg_presto.htm
http://www.asix.net/prg_presto.htm
http://www.asix.net/dwnld_up.htm
http://www.asix.net/dwnld_up.htm
http://www.asix.net/dwnld_up.htm


Once all the hardware is in place and all the drivers and software is installed, go
ahead and start the ASIX UP program. You will then be prompted with the following
screen that allows you to select and connect to your programmer. Please select the
programmer you are using and the proper port. If you check "Always use this S/N",
then you will no longer see this initial screen, but you can always select programmers
from within UP (Options > Select Programmer, or press Shift + F4 on the keyboard).

Figure 3. Start-up screen of ASIX UP

Next, you have to select the NOR device you are about to program. If it is the first
time you start UP you will also see the following screen where you can select the
device you want to program. Otherwise, you will be redirected to the main screen of
the software. You can always select another device through Device > Select device
(or press F4 on the keyboard).

Figure 4. Flash device selection screen of ASIX UP

The Device Family should be SPI FLASH EPROM, and the Device ID depends on the
respective NOR flash the target is equipped with. Below you can see a table indicating
a few of the NOR flash devices that can be found on the MSCC reference boards.


The table is only listing a few of the most commonly NOR flashes that
are used in the MSCC reference boards. Make sure to check the NOR
Part No. on your device before performing the flash procedure that is
outlined in this section.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 15 of 68



Table 1. Flash memory table

MSCC
reference
board
(family
name)

NOR Flash Part
No.

Device name
in ASIX UP

Binary image name

Serval-1 25P28V6P M25P128 linux-serval1-16mb-256kb.bin

Serval-1 MX25L12835FMI MX25L12835F linux-serval1-16mb-64kb.bin

Caracal-1 25P28V6P M25P128 linux-caracal1-16mb-256kb.bin

Serval-2 MX25L25635F MX25L25635F linux-serval2-32mb-64kb.bin

Jaguar-2 MX25L25635F MX25L25635F linux-
jaguar2-cu8sfp16-32mb-64kb.bin

Serval-T MX25L25635FMI MX25L25635F linux-servalt-32mb-64kb.bin



As seen from the table above, the Device name in ASIX UP is not
always the same or even similar to the Device Part No., and in that
case the Device name can usually be derived by the data-sheet of the
NOR device. This will be necessary for applications where customers
create their own board.

For MSCC reference boards though, the above table also provides the mapping to
the appropriate binary flash image. The APPL-4.0 package ( WebStaX , SMBStaX , IStaX
or CEServices ) contains the directory flash-images where binary flash images can
be found for all MSCC reference boards. The right-most column of the above table
indicates the right image for each reference board.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 16 of 68



With that in mind, open the right binary through File > Open (or press Ctrl + O on
the keyboard). You are now in the main screen of the program and you should see
something similar to the following:

Figure 5. Main screen of ASIX UP

The version of UP along with the loaded binary image can be seen on the top-left
corner, while the memory programmer (in this case FORTE) along with the selected
Device can be seen on the top-right corner. One thing to notice here is the voltage
of the flash device, and the expected value for MSCC ref. boards is something in the
range of 3.1V - 3.3V.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 17 of 68



The first time you use the software, you can also set your preferred program setting
under Options > Program settings (Shift + F10). Those will be kept across. We
suggest to check the "Do not perform blank check after erasing" option if you want to
speed-up the process. The next figure shows a possible configuration:

Figure 6. Program settings screen of ASIX UP

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 18 of 68



You are ready to flash your device now, so click on Device > Program > Program all
except OTP sector / Program all (depending on the NOR, you might be presented with
more than one option). The process should start (you might get a confirmation pop-up
first) and you will see some progress bars.

Figure 7. Programming process screen of ASIX UP

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 19 of 68



When the process is finished, you should get the following screen and no errors or
warnings.

Figure 8. Programming process screen of ASIX UP - successful programming

The device is now flashed with a bring-up image, but before it can be put to use one
final step is required. The MAC address of the board has been reset, and the board
will pick-up a random MAC address the next time it powers up. You need to change
that by making a RS232 connection to the device and issuing the following commands
on ICLI (Industrial Command Line Interface): platform debug allow and debug board
mac <mac-address>. Then reboot the device and the flashing process is complete.


The MAC address given is the device BASE address. You implicitly
should reserve the next N addresses for the device as well. N
depends on the number of physical ports on the device in question.

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 20 of 68



Let’s take a Serval-1 reference board. Here’s the output from the device’s first boot
after the flash process:


The device has selected a random MAC address after the flash
process. We now use the debug command for setting the board’s
MAC address and then reboot.

+M25PXX : Init device with JEDEC ID 0xC22018.
Serval Reference board detected (VSC7418 Rev. B).

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version 1_19-5f9ed7e - built 13:31:17, Jun 17 2016

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: VCore-III (MIPS32 24KEc) SERVAL
RAM: 0x80000000-0x88000000 [0x800292c0-0x87fdfffc available]
FLASH: 0x40000000-0x40ffffff, 256 x 0x10000 blocks
== Executing boot script in 3.000 seconds - enter ^C to abort
RedBoot> diag -p
RedBoot> fis load -x linux
MD5 signature validated
Stage1: 0x80100000, length 4311824 bytes
Initrd: 0x80600000, length 188416 bytes
Kernel command line: init=/usr/bin/stage2-loader loglevel=4
RedBoot> exec
Now booting linux kernel:
Base address 0x80080000 Entry 0x80100000
Cmdline : init=/usr/bin/stage2-loader loglevel=4
Active fis: linux

[    0.884288] vcfw_uio vcfw_uio: UIO driver loading
[    0.889189] vcfw_uio vcfw_uio: Invalid memory resource
[    0.894392] iounmap: bad address   (null)
00:00:01 Stage 1 booted
00:00:01 Using device: /dev/mtd7
00:00:10 Mounted /dev/mtd7
00:00:10 Loading stage2 from NOR flash partition 'linux'
00:00:12 Overall: 11669 ms, ubifs = 9590 ms, rootfs 2016 ms of which xz = 0 ms of
which untar = 0 ms
Starting application...
Using existing mount point for /switch/
W conf 00:00:16 65/conf_board_start#385: Warning: MAC address not set, using random:
02-00-c1-75-c2-83
Press ENTER to get started

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 21 of 68



5.1.2. Bootstrapping
After the NOR has been flashed with the steps outlined in the previous section,
the flash is partitioned, the boot-loader, Linux kernel and initramfs are installed
and for MSCC reference boards a bring-up application is present which allows for
basic network connectivity. Note that at this stage the NAND flash still needs to be
formatted and partitioned before it is put into use. The bootstrap option that is part of
the bring-up application will seamlessly take care of that, plus perform a SW upgrade
to the selected APPL-4.0 package ( WebStaX , SMBStaX , IStaX or CEServices ).

In order to demonstrate how the bootstrapping process works, we take the example
of a Serval-1 reference board that has been flashed using the method explained in
Flashing the NOR with a flash image.

Things needed to perform the bootstrap:

• The bootstrap option is only available through the ICLI management interface,
therefore a terminal connection to the device is required.

• Basic network connectivity from/to the device is also needed since we are going to
be downloading one of the APPL-4.0 packages into the device.

• An APPL-4.0 SW image ( WebStaX , SMBStaX , IStaX or CEServices ). Customers can
build this image themselves through the build system and by following the process
explained in section Setting up development environment. For reference boards
however, the released package already contains images for all MSCC reference
boards. These can be found in /bin/ of the respective release package. For this
example we will be using a SMBStaX image taken from SMBStaX-4.00.01/bin/
smb_serval/smb_serval.mfi

• An HTTP or TFTP server for distributing the above image.

Having all that in place, we simply log in to the device through ICLI and issue the
debug firmware bootstrap <url> command.


You may need to set-up IP configuration properly on device to
upgrade bootstrap firmware.

## platform debug allow

WARNING: The use of 'debug' commands may negatively impact system behavior.
Do not enable unless instructed to. (Use 'platform debug deny' to disable
debug commands.)

NOTE: 'debug' command syntax, semantics and behavior are subject to change
without notice.

## debug board mac 00-01-C1-00-C9-90
## reload cold
%% Cold reload in progress, please stand by.
Rebooting system...
## Umount donedone.[ 166.748728] VcoreIII I2C: Disabling with active transfer pending

[  166.784052] reboot: Restarting system

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 22 of 68



Press ENTER to get started
## platform debug allow

WARNING: The use of 'debug' commands may negatively impact system behavior.
Do not enable unless instructed to. (Use 'platform debug deny' to disable
debug commands.)

NOTE: 'debug' command syntax, semantics and behavior are subject to change
without notice.

## debug firmware bootstrap http://10.10.130.147:8080/smb_serval.mfi
Fetching...
looking up 10.10.130.147
connecting non-blocking to 10.10.130.147:8080
connection: Success
requesting http://10.10.130.147:8080/smb_serval.mfi
Bootstrap ubi starts...
ubiformat: mtd7 (nand), size 134217728 bytes (128.0 MiB), 1024 eraseblocks of 131072
bytes (128.0 KiB),
min. I/O size 2048 bytes
libscan: scanning eraseblock 1023 -- 100 % complete
ubiformat: 1024 eraseblocks have valid erase counter, mean value is 3
ubiformat: formatting eraseblock 1023 -- 100 % complete
Bootstrap ubi done ok.
Writing primary image
Erasing flash ... done
Programming flash ... done

Done
Writing backup image
Erasing flash ... done
Programming flash ... done

Done
Rebooting ...
[ 7757.970262] VcoreIII I2C: Disabling with active transfer pending
[ 7758.003073] reboot: Restarting system
...
// Skipping standard boot output
...
Press ENTER to get started

Username: admin
Password:
## show version

MAC Address      : 00-01-c1-00-c9-90
Previous Restart : Cold

System Contact   :
System Name      :
System Location  :
System Time      : 1970-01-01T00:17:19+00:00
System Uptime    : 00:17:19

Bootloader

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 23 of 68




The bootstrap process has now formatted and partitioned the NAND
flash, plus installed the selected Application image to both NOR and
NAND. The same image is both the active and the backup image of
the device.

5.2. Upgrading SW from within an existing installation
Performing a SW upgrade from within APPL-4.0 is similar to the bootstrap process,
with the difference that it is supported by all management interfaces. I.e. ICLI, Web,
JSON-RPC and SNMP. For simplicity reasons, this document will only focus on the
ICLI interface. The rest of the prerequisites listed in the bootstrap section (Basic
Upgrade Requirements) remain the same.

After having all the above in place, simply log in to the device and issue the firmware
upgrade <url> command as also seen in the example below:

----------
Image            : RedBoot (bootloader)
Version          : version 1_19-5f9ed7e
Date             : 13:31:17, Jun 17 2016

Active Image
------------
Image            : linux (primary)
Version          : Version 4.00.01
Date             : 2016-07-06T11:23:33+02:00
Upload filename  : smb_serval.mfi

Backup Image
------------
Image            : linux.bk (backup)
Version          : Version 4.00.01
Date             : 2016-07-06T11:23:33+02:00
Upload filename  : smb_serval.mfi

------------------
SID : 1
------------------
Chipset ID       : VSC7418
Board Type       : Serval PCB106
Port Count       : 11
Product          : Vitesse SMBStaX Switch
Software Version : SMBStaX (standalone) Version 4.00.01 Build 272
Build Date       : 2016-07-06T11:23:33+02:00
Code Revision    : 82e4c3f

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 24 of 68



Press ENTER to get started

Username: admin
Password:
## firmware upgrade http://10.10.130.147:8080/smb_serval.mfi
Fetching...
looking up 10.10.130.147
connecting non-blocking to 10.10.130.147:8080
connection: Success
requesting http://10.10.130.147:8080/smb_serval.mfi
Got 8936650 bytes
Starting flash update - do not power off device!
Erasing flash...done
Programming flash...done
Swapping images...done
Restarting, please wait...Umount failed: D[  450.658665] VcoreIII I2C: Disabling
with active transfer pending
evice or resource busy, retry with force
Umount failed again: Device or resource busy!!!
[  450.695431] reboot: Restarting system
...
//Skipping standard boot output
...
Press ENTER to get started

Username: admin
Password:
## show version

MAC Address      : 00-01-c1-00-c9-90
Previous Restart : Cold

System Contact   :
System Name      :
System Location  :
System Time      : 1970-01-01T00:01:43+00:00
System Uptime    : 00:01:43

Bootloader
----------
Image            : RedBoot (bootloader)
Version          : version 1_19-5f9ed7e
Date             : 13:31:17, Jun 17 2016

Active Image
------------
Image            : linux (primary)
Version          : dev-build by vkosteas@soft-dev10 2016-08-19T14:19:11+02:00
Config:smb_serval SDK:v02.32-smb
Date             : 2016-08-19T14:19:11+02:00
Upload filename  : smb_serval.mfi

Backup Image
------------

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 25 of 68



As seen from the example above, after the upgrade is complete the uploaded image
has taken its place as active image (in this case a development build was used for the
test), while the previously active image is now the new backup image.



The upgrade process outlined above can not be used in order to
upgrade an existing customer or MSCC reference board from an
eCos installation to a Linux installation. A binary flash image (MSCC
provided or customer provided) needs to be flashed in the device
first, according to the process explained in Installing SW from
scratch - How to flash a board.

6. Setting up development environment
Working with the source code raises some requirements to the development
environment. This section will provide instructions on how to set-up a development
machine based on x86_64 Ubuntu 16.04LTS installation. Other (recent) Linux
distributions can be used, but that is not supported by MSCC. Setting up the
development environment requires root access through the sudo command.

First step is to install a bunch of required packages using the package system
provided by Ubuntu:

Next step is to download and install the binary BSP. This example will be using
2017.02-066 as example, but future releases may depend on newer versions. Section:
Customizing the BSP shows the steps to determine which BSP version a given
WebStaX release expects to use. The steps below will download, install and test that
the installed binaries work:

Image            : linux.bk (backup)
Version          : Version 4.00.01
Date             : 2016-07-06T11:23:33+02:00
Upload filename  : smb_serval.mfi

------------------
SID : 1
------------------
Chipset ID       : VSC7418
Board Type       : Serval PCB106
Port Count       : 11
Product          : Vitesse SMBStaX Switch
Software Version : SMBStaXdev-build by vkosteas@soft-dev10 2016-08-19T14:19:11+02:00
Config:smb_serval SDK:v02.32-smb
Build Date       : 2016-08-19T14:19:11+02:00
Code Revision    : a506391+

1 $$ sudo apt-get install bc build-essential bzip2 coreutils cpio findutils gawk git
grep gzip libc6-i386 libcrypt-openssl-rsa-perl libncurses5-dev patch perl python
ruby sed squashfs-tools tcl tar wget libyaml-tiny-perl libcgi-fast-perl

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 26 of 68



The final step is to extract the WebStaX sources and build them using the newly
installed tool-chain. The WebStaX sources ( WebStaX , SMBStaX , IStaX or CEServices )
are proprietary SW and distribution may differ from customer to customer. Contact
your Microsemi support to get instructions on how to get access to the sources.

The outcome of a compilation is a so-called MFI file, which is the image format used
by WebStaX-based SW.

For IStaX and CEServices packages, there are individual per-target build
configurations (makefiles), whereas for WebStaX and SMBStaX packages, there is only
one single build configuration makefile covering all supported targets. The following
two sections show how to extract and build MFI files for the two flavors.

6.1. Using single-target build configuration makefiles
The snippet below assumes that the IStaX variant is used, and that the source
archive IStaX.tgz has already been downloaded to the home directory.

6.2. Using multi-target build configuration makefiles
Starting with version 4.3.0, an application compiled once may be used to create MFI
files for multiple targets. This is currently only supported for WebStaX and SMBStaX
packages. The bringup_multi.mk , web_multi.mk and smb_multi.mk are the only build
configuration makefiles distributed with these packages.

The snippet below assumes that the SMBStaX variant is used, and that the source
archive SMBStaX.tgz has already been downloaded to the home directory.

1 $$ cd
2 $$ wget -q http://mscc-ent-open-source.s3-eu-west-1.amazonaws.com/public_root/bsp/
mscc-brsdk-mips-2017.02-066.tar.gz
3 $$ sudo mkdir -p /opt/mscc
4 $$ sudo tar xf mscc-brsdk-mips-2017.02-066.tar.gz -C /opt/mscc
5 $$ /opt/mscc/mscc-brsdk-mips-2017.02-066/stage2/smb/x86_64-linux/usr/bin/
mipsel-linux-gcc --version
6 mipsel-linux-gcc.br_real (Buildroot 2016.05-git) 5.3.0
7 Copyright (C) 2015 Free Software Foundation, Inc.
8 This is free software; see the source for copying conditions.  There is NO
9 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1 $$ cd
2 $$ mkdir istax # Create a folder
3 $$ tar -C istax -xf IStaX.tgz # Extract the sources
4 $$ cd istax/build # Enter the building catalog
5 $$ ln -s configs/istax_serval_tep.mk config.mk # Select configuration to build
6 $$ make -j8 # Build the sources
7 ...
8 $$ ls obj/*.mfi # Test that an 'mfi' file was produced
9 obj/istax_serval_tep.mfi

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 27 of 68



Use make list_subtargets to show the MFI files that a multi target configuration
makefile creates, like this:

Finally, since all MFI files are linked every time a simple make is issued, it may be
desirable only to build the MFI files that are really needed. In order to do so, follow
these steps, which assumes that we are interested only in smb_caracal2.mfi :

7. Customizing SW
This section will document how to build the various SW components from sources, and
how to change the corresponding sources. The section is intended as a getting started
guide, and it will focus on documenting work-flow of MCSS developed components
(third-party components like Buildroot and RedBoot is documented by the upstream
projects).

7.1. Customizing the BSP
The BSP is used to cross-compile the majority of all the third-party components used
in the application. Some projects may want to add other third-party components
and use those in their customizations of the software. The easiest way to do that,
is to customize the BSP provided by MSCC. The BSP is distributed both in binary
and source format. To customize the BSP, the BSP sources are needed and must be
downloaded.

1 $$ cd
2 $$ mkdir smbstax # Create a folder
3 $$ tar -C smbstax -xf SMBStaX.tgz # Extract the sources
4 $$ cd smbstax/build # Enter the building catalog
5 $$ ln -s configs/smb_multi.mk config.mk # Select configuration to build
6 $$ make -j8 # Build the sources
7 ...
8 $$ ls obj/*.mfi # Test that a range of 'mfi' files were produced
9 obj/smb_caracal1.mfi  obj/smb_caracal2.mfi    obj/smb_caracal_lite.mfi

10 obj/smb_jr2_24.mfi    obj/smb_jr2_24_aqr.mfi  obj/smb_jr2_48.mfi
11 ...

1 $$ cd smbstax/build
2 $$ make list_subtargets
3 Targets: smb_caracal1.mfi smb_caracal2.mfi smb_caracal_lite.mfi ...

1 $$ cd smbstax/build
2 $$ rm -f obj/*.mfi # Remove any old MFI files to emphasize our point
3 $$ make -j8 smb_caracal2.mfi # Build only this MFI file
4 ...
5 $$ ls obj/*.mfi # Test that it's created
6 obj/smb_caracal2.mfi

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 28 of 68



First step is figure out which version of the BSP matches the application release.
To do that, go to the folder with the application sources (this example will use
the SMBStaX variant in version 4.00.01). The BSP version is specified in build/
make/paths-brsdk.mk in a variable called MSCC_SDK_VERSION . Here is how to find the
associated BSP version:

This tells us that BSP version 2017.02.066 belongs to the given SW release.
Download using a browser from: http://mscc-ent-open-source.s3-website-eu-
west-1.amazonaws.com or from the command line:

Before starting to customize the BSP, it is a good idea to check that it compiles
without any modifications. Building all stages of the BSP requires a number of
steps (and time). The building process is automated by the ./board/vtss/
make_binary_release.rb script.

Here is how to build the BSP for a MIPS target (expect this to take from 20 minutes
and up to several hours depending CPU/RAM/Disk resources):


Lots of warnings is printed on the screen when compiling the BSP.
These are warnings in third-party code, and can be ignored.


For more options in the ./board/vtss/make_binary_release.rb

script, please use ./board/vtss/make_binary_release.rb --help .

1 $$ cd ~/webstax2
2 $$ cat build/make/paths-brsdk.mk | grep "MSCC_SDK_VERSION "
3 MSCC_SDK_VERSION       ?= 2017.02-066

1 $$ cd
2 $$ wget -q http://mscc-ent-open-source.s3-eu-west-1.amazonaws.com/public_root/bsp/
mscc-brsdk-source-2017.02-066.tar.gz
3 $$ tar -xf mscc-brsdk-source-2017.02-066.tar.gz

1 $$ cd mscc-brsdk-source-2017.02-066
2 $$ ./board/vtss/make_binary_release.rb --arch mips --stage2 smb,minimal --parallel
--version 2017.02-066.01

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 29 of 68

http://mscc-ent-open-source.s3-website-eu-west-1.amazonaws.com
http://mscc-ent-open-source.s3-website-eu-west-1.amazonaws.com


If the build completes successfully, then it will store the resulting binary BSP in the
current folder. Lets see if it exists:

As we can see above, the build script has packed the binary BSP in mscc-brsdk-
mips-2017.02-066.01.tar.gz . The three folders output-mips-* are the workspaces
used by buildroot , we will use then later when changing the BSP.

The BSP is now ready to be installed in /opt/mscc/ and used by the application.

7.1.1. BSP Stages
Before starting to alter the BSP, some background knowledge on the use of stages will
be needed. The ./board/vtss/make_binary_release.rb will build both stage1 and
stage2 images.

The stage1 image includes Linux kernels for all supported targets, and the
stage2-loader which is used to load the MFI image and change root to the NAND
flash. Only the kernels in the stage1 image are chip dependent.

The stage2 image include everything but the kernel, it is not chip dependent (only
CPU architecture dependent), and it exists in the following variants: smb , minimal
and debug . The smb variant is being used in all production images ( WebStaX ,
SMBStaX , IStaX and CEServices ), the minimal is only used for bringup/bootstrap
images, and the debug variant includes the same packages as smb but all packages
are compiled with debug info.

1 $$ ls
2 CHANGES
3 COPYING
4 Config.in
5 Config.in.legacy
6 MSCC-README
7 Makefile
8 Makefile.legacy
9 README

10 arch
11 board
12 boot
13 configs
14 dl
15 docs
16 fs
17 linux
18 mscc-brsdk-mips-2017.02-066.01.tar.gz
19 output-mips-stage1
20 output-mips-stage2_minimal
21 output-mips-stage2_smb
22 package
23 support
24 system
25 toolchain

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 30 of 68



This means, that in order to add new packages to the image, then changes in stage2/
smb are required. To add support for new boards/CPUs or to alter the Linux kernel
configuration, then changes in stage1 are required.

7.1.2. Adding a package
This step will assume that the BSP which belongs to the application has been built
already, if not then go to section Customizing the BSP and follow the steps there.

The easiest way to alter the packages included in the various BSP stages/variants, is
to use the make menuconfig configuration tool which is part of buildroot . To do this,
navigate to the output-mips-xxx where xxx represents the stage and variant.

As an example, lets add the iproute2 package to the stage2_smb variant:

Use the curses menu to navigate to: Target packages then Networking
applications , and now select the iproute2 package. Exit the configuration tool
(remember to save at the end), and build the specific stage to see that it works like
expected (call make with the O=xxx options, but without the menuconfig target):



The configuration changes are only stored in the output-mips-

stage2_smb folder which will disappear when doing a clean build
(which is default in make_binary_release.rb ). To persist the changes
copy the output-mips-stage2_smb/.config to configs/

mscc_stage2_smb_defconfig .

This will re-build the stage2_smb variant, and include iproute2 and all dependencies
of iproute2 .


The BSP is using buildroot , to learn more about build root read the
upstream documentation at https://buildroot.org/.

The iproute2 tool has now been cross compiled for the MIPS CPU, and it is installed
in the output-mips-stage2_smb folder. But to use this along with the build system
used by the application, then it needs to be packed into a BSP package. To do that,
we will use the make_binary_release.rb script, but this time the --no-build option
is added to avoid a complete rebuild (actually nothing will be built, it will just make a
BSP package, this will only take a few minutes):

1 $$ cd mscc-brsdk-source-2017.02-066
2 $$ make O=output-mips-stage2_smb menuconfig

1 $$ make O=output-mips-stage2_smb

1 $$ ./board/vtss/make_binary_release.rb --arch mips --stage2 smb,minimal --parallel
--version 2017.02-066.01 --no-build

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 31 of 68

https://buildroot.org/


To persist the configuration changes, copy the output-mips-stage2_smb/.config to
configs/mscc_stage2_smb_defconfig :

The new build including the iproute2 package is now available in mscc-brsdk-
mips-2017.02-066.01.tar.gz.

7.1.3. Using the new BSP
To use the newly install BSP it needs to be installed, and the application needs to be
linked with the new BSP.

Installing the new BSP is simply a matter of extracting it in /opt/mscc :

To use the new BSP, either set the environment variable MSCC_SDK_VERSION or update
the default setting in build/make/paths-brsdk.mk . In this example we will use the
environment variable:


The first line in the output of the make script, is printing what BSP
it is pointing to. Use this to double check that it has picked up the
newly built BSP.

1 $$ cp output-mips-stage2_smb/.config configs/mscc_stage2_smb_defconfig

1 $$ cd mscc-brsdk-source-2017.02-066.01
2 $$ sudo tar -xf mscc-brsdk-mips-2017.02-066.01.tar.gz -C /opt/mscc/

1 $$ cd ~/webstax2/build
2 $$ rm -rf obj config.mk # always do a clean build when changing BSP
3 $$ ln -s configs/smb_caracal1.mk config.mk
4 $$ MSCC_SDK_VERSION=2017.02-066.01 make
5 Using toolchain: /opt/mscc/mscc-brsdk-mips-2017.02-066.01 - mips - smb
6 ...

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 32 of 68



The resulting mfi files will include the iproute2 command in the debug system
shell . Try install the image on a target device, and see if the ip command works as
expected:

7.2. Customizing the Linux Kernel
This step will assume that the BSP which belongs to the application has been built
already, if not then go to section Customizing the BSP and follow the steps there.

The Linux Kernel is part of the images in stage1 of the BSP, so its customization will
also take place in the stage1 using the kernel menuconfig .

However, the kernel is target specific, and so the customizations must take place in
the target specific directory. Let’s take the example of the jaguar2c family:

Using the curses menu, we can now make target specific customizations to the
kernel. But before going any further, some brief background on where the above
configurations are stored:

Press ENTER to get started

Username: admin
Password:
## platform debug allow
## debug system shell
/ # ip --help
/ # ip --help
Usage: ip [ OPTIONS ] OBJECT { COMMAND | help }

ip [ -force ] -batch filename
where  OBJECT := { link | address | addrlabel | route | rule | neighbor | ntable |

tunnel | tuntap | maddress | mroute | mrule | monitor | xfrm |
netns | l2tp | fou | tcp_metrics | token | netconf }

OPTIONS := { -V[ersion] | -s[tatistics] | -d[etails] | -r[esolve] |
-h[uman-readable] | -iec |
-f[amily] { inet | inet6 | ipx | dnet | mpls | bridge | link } |
-4 | -6 | -I | -D | -B | -0 |
-l[oops] { maximum-addr-flush-attempts } | -br[ief] |
-o[neline] | -t[imestamp] | -ts[hort] | -b[atch] [filename] |
-rc[vbuf] [size] | -n[etns] name | -a[ll] | -c[olor]}

$$ cd mscc-brsdk-source-2017.02-066
$$ cd output-mips-stage1/build/mscc-linux-jaguar2c-4b8fb7f/
$$ make ARCH=mips CROSS_COMPILE=../../host/usr/bin/mipsel-linux- menuconfig

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 33 of 68





Just like with the stage2 customization example that was presented
in Adding a package, the saved configuration from menuconfig is
stored in a temporary .config file inside the current directory;
this will be erased the next time a clean make is performed. The
permanent configurations are stored in two places: mscc-brsdk-

source-2017.02-066.01/board/vtss/common/linux.config where
global kernel options are kept and mscc-brsdk-

source-2017.02-066.01/package/mscc-linux-jaguar2c/linux.cfg

where target specific kernel options are kept. When configuring
stage1 the linux.config global options are applied first, while the
linux.cfg options are appended later on top of the global.


Take care that since the target specific options are applied in the
end, they will overwrite any contradicting options from the global
configuration. E.g. if an option such as CONFIG_NET is disabled
globally, but still enabled in a target specific file, then network
support will still be enabled for that target.



Because the .config options file that is auto-generated by
menuconfig will also contain more options, we recommend not to
copy the contents of this file, but instead manually edit the contents
of mscc-brsdk-source-2017.02-066.01/board/vtss/common/

linux.config and mscc-brsdk-source-2017.02-066.01/package/

mscc-linux-jaguar2c/linux.cfg . That will ensure that only the
needed options will be retained.

Let’s demonstrate how to add the option of overriding the default kernel command
line. Using the curses menu, navigate to: Kernel hacking then select the Built-in
kernel command line option and then use Help to display the name of the option. This
provides us with the name of the CONFIG_ options we need to set in order to enable
the given selection. Exit menuconfig without saving any changes, and then append
the new option to linux.cfg for jaguar2c (we only want to change it for this target)
and make a new build of the kernel only:

Next, we make a new package of the BSP that contains the newly built kernel for
jaguar2c , using the way described in Adding a package:

// Append the "CONFIG_" option to the target specific config file
$$ echo "CONFIG_CMDLINE_BOOL=y" >> ../../../package/mscc-linux-jaguar2c/linux.cfg
// Delete the buildroot stamp in order to trigger a new build without rebuilding the
entire stage1
$$ rm output-mips-stage1/build/mscc-linux-jaguar2c-4b8fb7f/.stamp_configured
// Call for a partial build of stage1
$$ make O=output-mips-stage1/

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 34 of 68



7.3. Customizing RedBoot
RedBoot is currently the only boot-loader supported by MSCC. All reference boards
come with a pre-installed boot-loader, and all releases include a binary boot-loader
image for each of the supported reference boards. This is normally sufficient when
just using the reference boards (or custom boards that are compatible with the
reference boards).

But some projects need to patch the boot-loader (often because they want to change
the output printed, due to changes to the hardware that need to be handled by
RedBoot or in order to implement features that can only be done in the boot-loader).
In such cases it is necessary to build the boot-loader from sources, patch in the
required changes and do a new boot-loader release for the given project.


Customers are welcome to use other boot-loaders such as uBoot , but
MSCC does not provide a working reference design based on uBoot .
Supporting alternative boot-loaders is therefore considered out-of-
scope for this document.

7.3.1. Installing required tools
RedBoot is a part of eCos, and it is therefore also using the tool-chain from eCos (not
the same tool-chain as the one provided by the BSP). First step in building RedBoot
from source is therefore to make sure that the required tools are installed:

If the /opt/ecos does not exists then follow the steps below to install it:

If the /opt/vtss-cross-ecos-mips32-24kec-v2 does not exists then follow the steps
below to install it:

Check that the required tools are installed and working correctly by invoking one of
the tools provided:

$$ ./board/vtss/make_binary_release.rb --arch mips --stage2 smb,minimal --parallel
--version 2017.02-066.01 --no-build

1 $$ ls /opt/ecos
2 $$ ls /opt/vtss-cross-ecos-mips32-24kec-v2

1 $$ wget -q http://mscc-ent-open-source.s3-eu-west-1.amazonaws.com/public_root/
ecos-toolchain/ecos.tar.bz2
2 $$ sudo tar -xf ecos.tar.bz2 -C /opt

1 $$ wget -q http://mscc-ent-open-source.s3-eu-west-1.amazonaws.com/public_root/
ecos-toolchain/vtss-cross-ecos-mips32-24kec-v2.tar.bz2
2 $$ sudo tar -xf vtss-cross-ecos-mips32-24kec-v2.tar.bz2 -C /opt

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 35 of 68



7.3.2. Building RedBoot from sources
Next step is to find the RedBoot sources. They are distributed as a mscc-redboot-
xxxxxxx.tar.gz (where xxxxxxx is the version number) file along with the normal
application releases. This example will be using version 5f9ed7e . Start by extracting
the respective tar-ball:



The RedBoot build script assumes that the sources reside in a git
repository, which therefore must be initialized:

After this, RedBoot is ready to build. Use the mscc-build.rb to build the
corresponding configuration for your device (expect this to take from a few minutes
and up to one hour):

The --machines <family_name> parameter of the script allows for selecting the right
chip family among the available options. Options valid for MSCC Application 4.00.01
are: luton26 , serval1 , jaguar2 and servalt .


For more options in the mscc-build.rb script, please use ./mscc-

build.rb --help .

When the build has completed, then the newly built images are available in the
images folder (in the above case, only serval1 image is present):

1 $$ /opt/ecos/ecos-2.0/tools/bin/ecosconfig --version
2 ecosconfig 2.0 (May  9 2003 09:45:47)
3 Copyright (c) 2002 Red Hat, Inc.
4 $$ /opt/vtss-cross-ecos-mips32-24kec-v2/bin/mipsel-vtss-elf-gcc --version
5 mipsel-vtss-elf-gcc (crosstool-NG 1.20.0 - vtss-eCos-toolchain-v2) 4.9.1
6 Copyright (C) 2014 Free Software Foundation, Inc.
7 This is free software; see the source for copying conditions.  There is NO
8 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1 $$ tar xf mscc-redboot-5f9ed7e.tar.gz

1 $$ cd mscc-redboot-5f9ed7e
2 $$ git init
3 Initialized empty Git repository in ~/mscc-redboot-5f9ed7e/.git/
4 $$ git add .
5 $$ git commit -m "Initial import of version 5f9ed7e"
6 [master (root-commit) 291b5ac] Initial import of version 5f9ed7e

1 $$ ./mscc-build.rb --verbose --parallel --machines serval1

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 36 of 68



7.3.3. Changing the RedBoot sources
RedBoot is now ready for customization. The main sources are found in packages/
redboot/current/src/ , and a good starting point is to read: packages/redboot/
current/src/main.c .

7.3.4. Installing a new bootloader
To try out the new boot-loader, install it on a target device using the debug firmware
bootloader <url> command:

7.4. Customizing the Application
The majority of the WebStaX functionality is implemented in the application, and
customizing the application is therefore an important section of this document. This
section will document different strategies on how the application can be customized.
Many projects may benefit from combining the different customization facilities.

7.4.1. External process
The easiest way to customize the application is to add an external process that will
communicate with the existing switch application as it is. How to add new processes
(internal developed or third-party) is covered in [AN1163]. [AN1163] also covers how
to configure an existing application without having to rebuild it.

7.4.2. Build configurations
A build configuration provides a high-level configuration of the build system with
information such as chip type and CPU-architecture. For IStaX and CEServices
packages, each build target must have its own build configuration makefile, which
must be located in the ./build/configs/ directory. For WebStaX and SMBStaX
packages, there are only multi-target build configuration makefiles included by
default though single-target build configuration files are still supported. These
configuration build files are also located in the ./build/configs/ directory. See also
Using multi-target build configuration makefiles.

In the following, the home directory is assumed to be the extraction directory of the
application source files.

7.4.2.1. Using a build configuration
In order to use a build configuration and build SW for a given target, we first create a
config.mk symbolic link to the respective configuration (e.g. bringup_multi.mk ):

1 $$ ls -la images/
2 total 984
3 drwxr-xr-x  2 anielsen epdeng2   4096 Aug 19 10:10 .
4 drwxr-xr-x 12 anielsen epdeng2   4096 Aug 19 10:10 ..
5 -rw-r--r--  1 anielsen epdeng2 151128 Aug 19 10:10 redboot-serval1.img

# platform debug allow
# debug firmware bootloader http://some.ip.address/redboot-machine.img

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 37 of 68



7.4.2.2. Customizing build configurations
Customers implementing their own boards must create a build configuration and add
it to the build/configs/ directory.

The build configuration is used to control the following:

1. The selected Switch API chipset.

2. The choice of MEBA implementation.

MEBA is the target board application interface (See UG1069 for more information
on MEBA).

3. Linux target OS platform name.

4. The choice of kernel-mode board driver.

This is a kernel-mode board driver that sets up I2C muxing, SFP to port number
mapping and exposes board-specific SPI devices.

5. The application flavor ( WebStaX , SMBStaX , IStaX or CEServices ) and possible
customizations to these pre-defined profiles.

Currently, there are two different types of board configuration layouts:

1. single

1 $$ cd build
2 $$ ln -s configs/bringup_multi.mk config.mk
3 $$ make -j8
4 "Using binary API from .../bin/mips"
5 Using toolchain: .../mscc-brsdk-mips-2017.02-066 - mscc-brsdk-mips-2017.02-066 -

minimal
6 [CXX] ../../vtss_appl/board/led.cxx
7 [CXX] ../../vtss_appl/board/monitor.cxx
8 [CXX] ../../vtss_appl/board/interrupt.cxx
9 [CXX] ../../vtss_appl/board/board_subjects.cxx

10 ...
11 Linking bringup_serval_t.elf
12 Generate bringup_caracal1.app-rootfs
13 Generate bringup_caracal2.app-rootfs
14 Generate bringup_jr2_48.app-rootfs
15 Generate bringup_ocelot_10.app-rootfs
16 Generate bringup_jr2_24_aqr.app-rootfs
17 Generate bringup_jr2_24.app-rootfs
18 Generate bringup_ocelot_8.app-rootfs
19 Generate bringup_serval2.app-rootfs
20 Generate bringup_serval.app-rootfs
21 Build bringup_caracal1.mfi
22 Build bringup_caracal2.mfi
23 Build bringup_ocelot_10.mfi
24 Generate bringup_serval_t.app-rootfs
25 Build bringup_jr2_24_aqr.mfi
26 Build bringup_jr2_24.mfi
27 make[1]: Leaving directory '.../build/obj'

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 38 of 68



The configuration file will only build an image for a single board. This is typically
used for CEServices and IStaX profiles.

2. multi

The configuration file will build multiple board images. This is used for all other
configurations.

7.4.2.2.1. Defining target configurations

Customizing both single and multi flavors will require defining a custom target by
means of the DefineNamedTarget macro.

Example:

This defines the named target board profile acme , consisting of the following
properties. You can see the list of target profiles in the file ./build/make/templates/
targets.in , along with possible values of the different entities.

In the example, the five parameter values are:

1. Profile name ( acme ).

A file called ./build/make/meba/meba_<profile_name>.json defines the MEBA
layer configuration.

2. Profile API target ( vsc7418_afiot ).

This is a named target configuration from the MESA Switch API.

3. Linux kernel target name ( serval1 ).

This selects the Linux kernel used in the MFI image.

4. MEBA target name ( acme ).

The MEBA library is taken from the API, but may also be customized (see later).
The reference drivers are in the MEBA ./vtss_api/meba/src/ directory.

5. MEBA linux kernel driver ( nulldrv ).

This controls I2C muxes and SFP to port number mappings. The nulldrv is
a dummy driver. The drivers are in the MEBA ./vtss_api/meba/
linux_kernel_modules/ directory. You may use one of the existing drivers if they
match your board or you may make your own. In the latter case, this parameter
should match the directory name accordingly.

The MEBA layer JSON configuration file typically defines thes board name, but may
have additional arbitrary <key,value> pairs that can be read from the C-code located
in vtss_api/meba/src/<your_meba_library>/ .

An example of the acme MEBA layer configuration file could be:

1 $($(eval $($(call DefineNamedTarget,acme,vsc7418_afiot,serval1,acme,nulldrv))))

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 39 of 68



build/make/meba/meba_acme.json

Once you have a target configuration, you can add this to the list of configurations
that will be built by the DefineTargetByName macro. This takes just two parameters.

1. The name of the build

This will control the name of the image file produced: <name>.mfi .

2. The name of the target profile (the name from a DefineNamedTarget call.)

You may have one or more calls to DefineNamedTarget . Each call will just add to the
list of configurations that will be built.

7.4.2.2.2. Customizing MEBA layer
As the MEBA layer is the glue layer between the application and your target board,
this is most likely to needing customization.

When you are creating a new target configuration, you are providing the MEBA
interface name. If you just change the name, the build system will search for a pre-
compiled MEBA layer with that name. While it is possible to add a new binary MEBA
layer, you will typically be better off by providing the layer as source code, which will
get compiled and combined into your build image on the fly.

To do this, you can use the Custom/MebaSrc_<name> "make" variable. This variable
(with <name> matching your custom MEBA layer name) should be a list of source files
which can be compiled into a MEBA library. The files can be located anywhere in the
source tree, typically relative to the $(TOPABS) predefined variable.

Example:

Here, the acme MEBA layer will be created from a single source file, and it will
be available for creating custom target configurations with the DefineNamedTarget
macro.

7.4.2.2.3. Controlling application modules
The functionality of the switch application is defined by two factors

1. The application main profile.

This will be WebStaX , SMBStaX , IStaX or CEServices . Each profile is licensed
separately, so not all may be available to you.

1 {
2 "meba""meba" : {
3 "board""board":"Acme MK2",
4 "type""type":"123",
5 "target""target":"0x7418"
6 },
7 {"dummy""dummy":"end" }
8 }

1 Custom/MebaSrc_acme := $(TOPABS)/vtss_appl/meba/meba_acme.c

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 40 of 68



2. Specifically added or omitted modules.

Modules added may be one defined by you, or a module normally used in another
profile.

The profile is normally selected in the second last line in the configuration file. You
should be able to locate the profile name (all caps), and you can change this according
to your desire and what profiles you have licensed.

The specific adding and omission of individual modules are controlled by two make
variables:

• Custom/AddModules

• Custom/OmitModules

You can add a line setting each of these variables (between the first and the last line)
as desired. Individual module names are separated by space. You can check the result
by executing make show_modules .

Note that not all modules may be able to be removed individually, but may tie to
other modules. Also be sure to re-compile after changing module configuration ( make
clean )

7.4.2.2.4. Customizing preprocessor variables

You can add custom preprocessor variables by using the Custom/Defines make
variable. This can enable certain features in default modules (refer to other
configuration files) or behavior of modules in your own modules. You set CPP
preprocessor options and all application code will have these compiler options added.

Example:

7.4.2.2.5. Customizing single image configuration makefile

Below is the example configuration file ce_serval_tep.mk :

The above file does not contain a DefineNamedTarget macro - at least it seems. It
uses the serval_tep name, but that is a profile name that comes with the default
set of profiles, which can be found in ./build/make/templates/targets.in . So, to
customize this build file you would add your own target profile (as described earlier),
and then use that in the DefineTargetByName macro.

For example:

1 Custom/Defines := -DMY_OPTION=1

1 include $(BUILD)/make/templates/linuxSwitch.in
2 $($(eval $($(call DefineTargetByName,ce_serval_tep,serval_tep))))
3 $($(eval $($(call linuxSwitch/ServalT,CESERVICES,STANDALONE,SERVAL_TEP,brsdk,mips))))
4 $($(eval $($(call linuxSwitch/Build))))

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 41 of 68



The above example creates a configuration file to build ce_acme.mfi (line 3), using
the original configuration of ce_serval_tep (line 2), but renaming the board name by
using the previously defined ./build/make/meba/meba_acme.json file. Also, it will use
the acme MEBA kernel module driver (directory name acme ).

7.4.2.2.6. Customizing multi image configuration file
Let us look at an example file:

While the example above uses the general layout of the "multi" image configurations,
only one image is produced (only one DefineTargetByName call).

The above example defines a new MEBA layer acme (line 2), which is used in the
target configuration of the same name (line 3), and again used to compile an SMBStaX
image (line 5) called smb_acme.mfi (line 4).

7.4.3. Adding a custom module to the Application
This section provides a detailed description of how to add a new software module to
the Application. An example hello_world module will be created along with a trace
message indicating proper execution of the module. Finally, the module will be added
to all management interfaces.

For the rest of the section, it is assumed that the home directory is the extraction
point of the application sources, see Extract APPL sources.

7.4.3.1. Creating a makefile
Each application module has each own makefile, located in build/make/ . Therefore
we create a new file build/make/module_hello_world.in with the below content:

build/make/module_hello_world.in

1 include $(BUILD)/make/templates/linuxSwitch.in
2 $($(eval $($(call DefineNamedTarget,acme,vsc7435_aqr,servalt,servalt,acme))))
3 $($(eval $($(call DefineTargetByName,ce_acme,acme))))
4 $($(eval $($(call linuxSwitch/ServalT,CESERVICES,STANDALONE,SERVAL_TEP,brsdk,mips))))
5 $($(eval $($(call linuxSwitch/Build))))

1 include $(BUILD)/make/templates/linuxSwitch.in
2 Custom/MebaSrc_acme := $($(TOPABS))/vtss_appl/meba/meba_acme.c
3 $($(eval $($(call DefineNamedTarget,acme,vsc7418_afiot,serval1,acme,nulldrv))))
4 $($(eval $($(call DefineTargetByName,smb_acme,acme))))
5 $($(eval $($(call linuxSwitch/Multi,SMBSTAX,brsdk,mips))))
6 $($(eval $($(call linuxSwitch/Build))))

1 MODULE_ID_hello_world := 143 # VTSS_MODULE_ID_HELLO_WORD
2 DIR_hello_world := $($(DIR_APPL))/hello_world
3 OBJECTS_hello_world := hello_world.o
4 $(OBJECTS_hello_world): %.o: $($(DIR_hello_world))/%.cxx
5 $($(call compile_cxx,$($(MODULE_ID_hello_world)), $@, $<))
6
7 INCLUDES += -I$($(DIR_hello_world))

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 42 of 68




The first character of the $(call compile_c, $@, $<) line must be
tab and not spaces, per makefile rules.

7.4.3.2. Creating a source directory
Switch application modules are placed in different directories inside /vtss_appl/ . To
add the new module’s sources simply create a new directory called hello_world and
start adding source and header files into it:

The external header hello_world_api.h is necessary since it contains the declaration
of the module’s init function:

vtss_appl/hello_world/hello_world_api.h

And the hello_world program which is using the standard initialization function
template, with a single printf statement:

1 $$ cd vtss_appl/
2 $$ mkdir hello_world
3 $$ vim hello_world/hello_world_api.h
4 ...
5 $$ vim hello_world/hello_world.cxx
6 ...

1 #ifndef _HELLO_WORLD_API_H_
2 #define _HELLO_WORLD_API_H_
3
4 /* Initialize module */
5 vtss_rc hello_world_init(vtss_init_data_t *data);
6
7 #endif /* _HELLO_WORLD_API_H_ */

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 43 of 68



vtss_appl/hello_world/hello_world.cxx

7.4.3.3. Adding the module to the build
With the makefile and the module’s sources present, we now add the new module
to the build by appending it to the build configuration as described in Build
configurations:

And next we call the module’s init function through the application’s main
( /vtss_appl/main/main.cxx ):

vtss_appl/main/main.cxx

1 #include "main.h"
2
3 /* Initialize module */
4 vtss_rc hello_world_init(vtss_init_data_t *data)
5 {
6 vtss_isid_t isid = data->isid;
7 vtss_rc rc = VTSS_OK;
8
9 switchswitch (data->cmd) {

10 casecase INIT_CMD_INIT:
11 printf("%s\n\n", "Hello World!");
12 breakbreak;
13 casecase INIT_CMD_START:
14 breakbreak;
15 casecase INIT_CMD_CONF_DEF:
16 breakbreak;
17 casecase INIT_CMD_MASTER_UP:
18 breakbreak;
19 casecase INIT_CMD_MASTER_DOWN:
20 breakbreak;
21 casecase INIT_CMD_SWITCH_ADD:
22 breakbreak;
23 casecase INIT_CMD_SWITCH_DEL:
24 breakbreak;
25 defaultdefault:
26 breakbreak;
27 }
28 returnreturn rc;
29 }

1 Custom/AddModules := tod post adt_7476_api hello_world

1 #ifdef VTSS_SW_OPTION_HELLO_WORLD
2 #include "hello_world_api.h"
3 #endif

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 44 of 68



 The init call must be placed inside the initfun struct.

vtss_appl/main/main.cxx

Assign the module a unique module ID, that has to be added in 2 places:

1 staticstatic structstruct {
2 vtss_rc (*func)(vtss_init_data_t *data);
3 constconst char *name;
4 vtss_tick_count_t max_callback_ticks;
5 init_cmd_t max_callback_cmd;
6 } initfun[] = {
7 #ifdef VTSS_SW_OPTION_HELLO_WORLD
8 INITFUN(hello_world_init)
9 #endif

10 }

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 45 of 68



vtss_appl/include/vtss/appl/module_id.h

1 /** Module IDs
2 * !!!!! IMPORTANT !!!!!
3 * ---------------------
4 * When adding new module IDs, these MUST be added at the end of the current
5 * list. Also module IDs MUST NEVER be deleted from the list.
6 * This is necessary to ensure that the Msg protocol can rely on consistent
7 * module IDs between different SW versions.
8 */
9 enumenum {

10 /* Switch API */
11 VTSS_MODULE_ID_API_IO = 0, /* API I/O Layer */
12 VTSS_MODULE_ID_API_CI = 1, /* API Chip Interface Layer */
13 VTSS_MODULE_ID_API_AI = 2, /* API Application Interface
Layer */
14 VTSS_MODULE_ID_SPROUT = 3, /* SPROUT (3) */
15 VTSS_MODULE_ID_MAIN = 4,
16 ...
17 VTSS_MODULE_ID_HELLO_WORLD = 143,
18
19 /*
20 * INSERT NEW MODULE IDS HERE. AND ONLY HERE!!!
21 *
22 * REMEMBER to add a new entry in the module id database on our twiki
23 * before adding the entry here!!!
24 *
25 * Assign the module ID number from the database to the enum value here
26 * like shown in VTSS_MODULE_ID_DHCP_SERVER above.
27 * This will allow for 'holes' in the enum ranges on different products/
branches.
28 *
29 * REMEMBER ALSO TO ADD ENTRY IN \vtss_appl\util\vtss_module_id.c\
vtss_module_names[] !!!
30 * REMEMBER ALSO TO ADD ENTRY IN \vtss_appl\util\vtss_module_id.c
vtss_priv_lvl_groups_filter[] !!!
31 */
32
33 /* Last entry, default */
34 VTSS_MODULE_ID_NONE
35 };

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 46 of 68



vtss_appl/util/vtss_module_id.cxx

Perform a make and test that the new module is included in the build:

And then upgrade the device with the newly built .mfi image. Check that the new
module is added successfully by observing the Hello World! message:

7.4.3.4. Adding management interfaces
The MSCC application stack includes four different management interface ( ICLI ,
SNMP , JSON-RPC and Web ). When adding new modules, it is often necessary to add
new commands (or objects) in the management interfaces. Most modules provided by
MSCC are fully supported on all management interfaces, but projects that are adding

1 #include "vtss_module_id.h"
2
3 /* These module name will shown as privilege group name.
4 Please don't use space in module name, use under line instead of it.
5 The module name can be used as a command keyword. */
6 constconst char * constconst vtss_module_names[VTSS_MODULE_ID_NONE + 1] =
7 {
8 [VTSS_MODULE_ID_API_IO] /*   0 */ = "obsolete_api_io",
9 [VTSS_MODULE_ID_API_CI] /*   1 */ = "api_cil",

10 [VTSS_MODULE_ID_API_AI] /*   2 */ = "api_ail",
11 [VTSS_MODULE_ID_SPROUT] /*   3 */ = "sprout",
12 [VTSS_MODULE_ID_MAIN] /*   4 */ = "main",
13 ...
14 [VTSS_MODULE_ID_HELLO_WORLD] /* 143 */ = "Hello_World",
15
16 /* Add new module name above it. And please don't use space
17 in module name, use underscore instead. */
18 [VTSS_MODULE_ID_NONE] = "none"
19 };

1 $$ touch vtss_appl/hello_world/hello_world.cxx
2 $$ make -C build
3 Using toolchain: /opt/mscc/mscc-brsdk-mips-2017.02-066 - mips - smb
4 ...
5 [CXX] ../../vtss_appl/hello_world/hello_world.cxx
6 ...

1 00:00:01 Stage 1 booted
2 00:00:01 Using device: /dev/mtd7
3 00:00:09 Mounted /dev/mtd7
4 00:00:09 Loading stage2 from RAM
5 00:00:10 Stage2 ends at 0x76c4ece6, offset 00874ce6
6 00:00:10 Overall: 9553 ms, ubifs = 8029 ms, rootfs 1454 ms of which xz = 0 ms of

which untar = 0 ms
7 Starting application...
8 Using existing mount point for /switch/
9 Hello World!

10
11 Press ENTER to get started

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 47 of 68



new modules only need to implement the interfaces they need. This section covers
basic examples of how to add a new management interface to a module, e.g. for a
new custom module. We will be improving on top of the existing hello_world custom
module.

7.4.3.4.1. ICLI

ICLI is the command line interfaces that users are presented with when logging into
using rs232 , telnet or ssh . This section will show how to create a simple ICLI
command.

ICLI commands are traditionally implemented inside the module directory, and called
<module_name>.icli .

A very simple ICLI file could look something like this:

vtss_appl/hello_world/hello_world.icli

To include the ICLI file in the build job use the add_icli function as shown below (
1 ):

make/module_hello_world.in

Register the ICLI command for the module:

CMD_BEGIN
COMMAND = hello world
PRIVILEGE = ICLI_PRIVILEGE_15
CMD_MODE = ICLI_CMD_MODE_EXEC

CODE_BEGIN
{

(void)icli_session_self_printf("Hello world\n");
}
CODE_END
CMD_END

1 DIR_hello_world := $($(DIR_APPL))/hello_world
2 OBJECTS_hello_world := hello_world.o
3 $($(eval $($(call
add_icli,$($(MODULE_ID_hello_world)),$($(DIR_hello_world))/hello_world.icli)))) 1

4 $(OBJECTS_hello_world): %.o: $($(DIR_hello_world))/%.cxx
5 $($(call compile_cxx, $@, $<))
6
7 INCLUDES += -I$($(DIR_hello_world))

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 48 of 68



vtss_appl/hello_world/hello_world.cxx

7.4.3.4.2. Web

The Web GUI is comprised of the following two elements:

• Static elements - HTML pages, style sheets, and graphic files.

• Dynamic elements - Dynamic data retrieved by the static HTML pages –
representing state of configuration data. These are implemented in so-called page
handlers that can be found in the following module directory for each module:
vtss_appl/<module>/<module>_web.c . When creating a custom module, the
respective module_web.c handler needs to be implemented, along with the html
pages for the new module. HTML pages are usually located in
vtss_appl/<module>/html/*.htm . When a new page is created, it has to be added
in the web GUI by listing the page in vtss_appl/web/menu_default.c .

Simply modifying the style sheet and the graphic resource files directly can, to a
large extent, change the graphic look of the Web GUI. Style sheets are located in
vtss_appl/web/html/lib/*.css . Graphics files are located in vtss_appl/web/html/
images/ . Both GIF and PNG formats are used. If changing graphic files, their sizes
should be retained.

Finally, the web logo can be also customized by changing the icons vtss_appl/web/
html/logo.gif and vtss_appl/web/html/favicon.ico .

7.4.3.4.3. SNMP and JSON-RPC

This section will provide a simple example on how to expose objects in a private MIB
and on the JSON-RPC interface.


The expose framework is not suitable for implementing public MIBs .
Public MIBs are implemented using the mib2c tool provided by the
net-snmp project. Using mib2c is out-of-scope for this document.


The Expose framework will derive the MIB or JSON specification
from the implementation, and not the implementation from the
specification. This may be different from other frameworks.

1 #include "main.h"
2 externextern "C" int hello_world_icli_cmd_register();
3 ..
4 ..
5 switchswitch (data->cmd) {
6 casecase INIT_CMD_INIT:
7 T_W("hello world! (init)\n\n");
8 hello_world_icli_cmd_register();

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 49 of 68



The Expose framework is used to expose existing C/C++ structures/methods on a
JSON-RCP or SNMP interface. We therefore need some structures and methods to work
with before the framework can be used. The following header file for the hello world
example defines a simple structure with an associated get method (the three init
functions will be explained later):

vtss_appl/hello_world/hello_world.hxx

1 #ifndef __VTSS_HELLO_WORLDH__
2 #define __VTSS_HELLO_WORLDH__
3
4 #include <main.h>
5
6 typedeftypedef structstruct {
7 int status;
8 } hello_world_status_t;
9

10 vtss_rc hello_world_status_get(hello_world_status_t *st);
11
12 externextern "C" void vtss_appl_hello_json_init();
13 externextern "C" void hello_mib_init();
14 vtss_rc hello_world_init(vtss_init_data_t *data);
15
16 #endif

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 50 of 68



When the type definitions are in place, an abstract serialize function needs to be
defined. The serialize function is used for both the JSON and SNMP interface. The
serialize function should be placed in a <module_name>_serializer.hxx file, and it will
look something like this:

vtss_appl/hello_world/hello_world_serializer.hxx

1 #ifndef __VTSS_HELLO_WORLD_SERIALIZER_HXX__
2 #define __VTSS_HELLO_WORLD_SERIALIZER_HXX__
3
4 #include "vtss_appl_serialize.hxx"
5 #include "hello_world.hxx"
6
7 namespacenamespace vtss {
8 namespacenamespace appl {
9 namespacenamespace hello_world {

10 namespacenamespace interfaces {
11 // Defines how the hello_world_status_t is being exposed
12 structstruct StatusLeaf {
13 // List of parameters for the access methods
14 typedeftypedef vtss::expose::ParamList<
15 vtss::expose::ParamVal<hello_world_status_t *>> P;
16
17 // Serializing the individual arguments
18 VTSS_EXPOSE_SERIALIZE_ARG_1(hello_world_status_t &s) {
19 // Expose the struct as an "object" when using JSON.
20 typenametypename HANDLER::Map_t m =
21 h.as_map(vtss::tag::Typename("hello_world_status_t"));
22
23 // Expose the individual fields in the structure
24 m.add_leaf(s.status, vtss::tag::Name("status"),
25 vtss::expose::snmp::Status::Current,
26 vtss::expose::snmp::OidElementValue(1),
27 vtss::tag::Description("description"));
28 }
29
30 // List all the access methods - only get is needed for read-only objects
31 VTSS_EXPOSE_GET_PTR(hello_world_status_get);
32 };
33 } // namespace interfaces
34 } // namespace hello_world
35 } // namespace appl
36 } // namespace vtss
37
38 #endif // __VTSS_HELLO_WORLD_SERIALIZER_HXX__

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 51 of 68



When the serialize classes are in place, then the object can be exposed on the
JSON and/or SNMP interfaces. Here is how to create a JSON module and expose the
hello_world_status_get method:

vtss_appl/hello_world/hello_world_json.cxx

1 #include "hello_world_serializer.hxx"
2 #include "vtss/basics/expose/json.hxx"
3
4 usingusing namespacenamespace vtss;
5 usingusing namespacenamespace vtss::json;
6 usingusing namespacenamespace vtss::expose::json;
7 usingusing namespacenamespace vtss::appl::hello_world::interfaces;
8
9 // Register the methods in the json engine

10 namespacenamespace vtss { void json_node_add(Node *node); }
11
12 // Create a name space in the json-spec
13 staticstatic NamespaceNode ns_hello_world("helloWorld");
14
15 // Wrapper function to do the registration
16 externextern "C" void vtss_appl_hello_json_init() {
17 json_node_add(&ns_hello_world);
18 }
19
20 // Add the structure as a read-only object on the json interface.
21 // The resulting json method will be called "helloWorld.status.get"
22 staticstatic StructReadOnly<StatusLeaf> l(&ns_hello_world, "status");

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 52 of 68



The same serialize function can now be used to expose the hello_world_status_t
structure as objects in the SNMP tree. Following is an example showing how to add a
new MIB, and expose the structure as read-only objects in the MIB:

vtss_appl/hello_world/hello_world_mib.cxx

The generated MIB file can be downloaded from a running target using the URL
http://admin:@a.b.c.d/VTSS-HELLO-MIB.mib, where a.b.c.d is the IP address of the
target.

1 #include "hello_world_serializer.hxx"
2
3 VTSS_MIB_MODULE("helloMib", "HELLO", hello_mib_init, 1000, root, h) {
4 h.add_history_element("000000000000Z", "Initial version");
5 h.description("Example mib produced by VTSS-Expose");
6 }
7
8 #define NS(VAR, P, ID, NAME) static NamespaceNode VAR(&P, OidElement(ID, NAME))
9

10 usingusing namespacenamespace vtss;
11 usingusing namespacenamespace expose::snmp;
12
13 namespacenamespace vtss {
14 namespacenamespace appl {
15 namespacenamespace hello_world {
16 namespacenamespace interfaces {
17 NS(objects, root, 1, "helloMibObjects");;
18 NS(hello_status, objects, 2, "helloStatus");;
19
20 staticstatic StructRO2<StatusLeaf> l(
21 &hello_status,
22 vtss::expose::snmp::OidElement(1, "helloStatusGlobals")
23 );
24
25 } // namespace interfaces
26 } // namespace hello_world
27 } // namespace appl
28 } // namespace vtss

wget http://admin:@a.b.c.d/VTSS-HELLO-MIB.mib

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 53 of 68

http://admin:@a.b.c.d/VTSS-HELLO-MIB.mib


The final step is to actually implement the hello_world_status_get method, register
the hello_world module in the SNMP and JSON trees and to update the make file.

vtss_appl/hello_world/hello_world.cxx

make/module_hello_world.in

1 #include <hello_world.hxx>
2
3 vtss_rc hello_world_status_get(hello_world_status_t *st) {
4 st->status = 123;
5 returnreturn VTSS_RC_OK;
6 }
7
8 vtss_rc hello_world_init(vtss_init_data_t *data) {
9 ...

10 switchswitch (data->cmd) {
11 ...
12 casecase INIT_CMD_INIT:
13 ...
14 vtss_appl_hello_json_init(); // register the JSON commands
15 hello_mib_init(); // register the MIB objects
16 breakbreak;
17 ...
18 }
19
20 ...
21
22 returnreturn VTSS_RC_OK;
23 }

1 DIR_hello_world := $($(DIR_APPL))/hello_world
2
3 OBJECTS_hello_world := \\
4 hello_world.o \\
5 $(if$(if $($(MODULE_PRIVATE_MIB)),hello_world_mib.o)) \\
6 $(if$(if $($(MODULE_JSON_RPC)),hello_world_json.o))
7
8 $($(eval $($(call add_icli,$($(DIR_hello_world))/hello_world.icli))))
9

10 $(OBJECTS_hello_world): %.o: $($(DIR_hello_world))/%.cxx
11 $($(call compile_cxx, $@, $<))
12
13 INCLUDES += -I$($(DIR_hello_world))

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 54 of 68



7.4.3.5. Trace system
The trace system allows for modules to printout helpful messages to the console such
as errors, warnings or simply debug messages. The trace system is a framework
already included in the MSCC application, however new modules have to register to
it before they can start using it. The trace system is also configurable per module,
with the option to specify which levels of tracing will be active (i.e. shown in the
console) at any given time. The trace system features the following trace levels (listed
in descending priority):

• Error

• Warning

• Info

• Debug

• Noise

• Racket

The levels are quite intuitive and a module can use any of them after having registered
itself to the trace system. The first step in doing that is to assign the module a unique
module ID that has to be added as follows:

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 55 of 68



vtss_appl/util/vtss_module_id.cxx

Next, create a new file called hello_world_trace.h with the following content:

vtss_appl/hello_world/hello_world_trace.h

1 /* In most cases, a privilege level group consists of a single module
2 (e.g. LACP, RSTP or QoS), but a few of them contains more than one.
3 For example, the "security" privilege group consists of authentication,
4 system access management, port security, TTPS, SSH, ARP inspection and
5 IP source guard modules.
6 The privilege level groups shares the same array of "vtss_module_names[]".
7 And use "vtss_priv_lvl_groups_filter[]" to filter the privilege level group

which
8 we don't need them.
9 For a new module, if the module needs an independent privilege level group

10 then the filter value should be equal 0. If this module is included by other
11 privilege level group then the filter value should be equal 1.
12 Set filter value '0' means a privilege level group mapping to a single module
13 Set filter value '1' means this module will be filetered in privilege groups
*/
14 constconst int vtss_priv_lvl_groups_filter[VTSS_MODULE_ID_NONE+1] =
15 {
16 /*[VTSS_MODULE_ID_API_IO]             0 */ 1,
17 /*[VTSS_MODULE_ID_API_CI]             1 */ 1,
18 /*[VTSS_MODULE_ID_API_AI]             2 */ 1,
19 /*[VTSS_MODULE_ID_SPROUT]             3 */ 1,
20 /*[VTSS_MODULE_ID_MAIN]               4 */ 1,
21 ...
22 /*[VTSS_MODULE_ID_HELLO_WORLD]      143 */ 1,
23
24 /* Hint:
25 * For a new module, if the module needs an independent privilege level group
26 * then the filter value should be equal 0. If this module is included by
other
27 * privilege level group then the filter value should be equal 1.
28 * Set filter value '0' means a privilege level group mapping to a single
module
29 * Set filter value '1' means this module will be filetered in privilege
groups
30 **/
31
32 // LAST ELEMENT ////////////////////////////////////////////////////////////
33 /*[VTSS_MODULE_ID_NONE] */ 0
34 };

1 #ifndef _HELLO_WORLD_TRACE_H_
2 #define _HELLO_WORLD_H_
3
4 #define VTSS_TRACE_MODULE_ID VTSS_MODULE_ID_HELLO_WORLD
5 #define VTSS_TRACE_GRP_DEFAULT 0 1

6 #define TRACE_HELLO_WORLD_GRP_CNT          1
7
8 #endif /* _HELLO_WORLD_TRACE_H_ */

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 56 of 68



On top of the per module trace level, each module can have each own trace group for
better trace granularity. The above header defines the needed trace groups, in this
case only one group called default as seen in 1 .

Finally, we update the hello_world.cxx program to include the new header, declare
the new default trace group 2 and register the module to the trace system 1 , 3 :

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 57 of 68



vtss_appl/hello_world/hello_world.cxx

1 #include "hello_world_trace.h"
2 #include "vtss_trace_api.h"
3
4 #if (VTSS_TRACE_ENABLED)
5 staticstatic vtss_trace_reg_t trace_reg = 1

6 {
7 /*.module_id = */VTSS_TRACE_MODULE_ID,
8 /*.name      = */"hello_world",
9 /*.descr     = */"example"

10 };
11
12 staticstatic vtss_trace_grp_t trace_grps[TRACE_HELLO_WORLD_GRP_CNT] = 2

13 {
14 /*[VTSS_TRACE_HELLO_WORLD_GRP_DEFAULT] = */{
15 /*.name      = */"default",
16 /*.descr     = */"Default",
17 /*.lvl       = */VTSS_TRACE_LVL_WARNING,
18 /*.flags     = */1,
19 }
20 };
21 #endif /* VTSS_TRACE_ENABLED */
22
23 /* Initialize module */
24 vtss_rc hello_world_init(vtss_init_data_t *data)
25 {
26 vtss_isid_t isid = data->isid;
27 vtss_rc rc = VTSS_OK;
28
29 ifif (data->cmd == INIT_CMD_INIT) { 3

30 /* Initialize and register trace resources */
31 VTSS_TRACE_REG_INIT(&trace_reg, trace_grps, TRACE_HELLO_WORLD_GRP_CNT);
32 VTSS_TRACE_REGISTER(&trace_reg);
33 }
34 switchswitch (data->cmd) {
35 casecase INIT_CMD_INIT:
36 printf("%s\n\n", "Hello World!");
37 T_W("hello world! (init)\n\n"); 4

38 breakbreak;
39 casecase INIT_CMD_START:
40 T_W("hello world! (start)\n\n"); 5

41 breakbreak;
42 casecase INIT_CMD_CONF_DEF:
43 breakbreak;
44 casecase INIT_CMD_MASTER_UP:
45 breakbreak;
46 casecase INIT_CMD_MASTER_DOWN:
47 breakbreak;
48 casecase INIT_CMD_SWITCH_ADD:
49 breakbreak;
50 casecase INIT_CMD_SWITCH_DEL:
51 breakbreak;
52 defaultdefault:
53 breakbreak;
54 }

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 58 of 68



Finally, we use the trace system to add a couple of warning messages 4 , 5 and
build the new application. Upgrade the device with the new image and check that two
warning messages are emitted during boot as expected:

7.4.3.6. Locking
The critd module that is always included in any MSCC application helps in
protecting critical sections by the use of mutexes and semaphores. Have a look on
vtss_appl/misc/critd_api.h for more information on the module’s interfaces. In this
section, we will show how to use the interfaces provided by critd in order to secure
critical sections inside the new hello_world module. We also demonstrate the use
of scope locking that eases the lock/unlock process. See the new hello_world.cxx
program below:

55 returnreturn rc;
56 }

00:00:01 Stage 1 booted
00:00:01 Using device: /dev/mtd7
00:00:09 Mounted /dev/mtd7
00:00:09 Loading stage2 from RAM
00:00:10 Stage2 ends at 0x76fc6ce6, offset 00874ce6
00:00:10 Overall: 9476 ms, ubifs = 7952 ms, rootfs 1453 ms of which xz = 0 ms of
which untar = 0 ms
Starting application...
Using existing mount point for /switch/
Hello World!
W hello_world 00:00:32 66/hello_world_init#37: Warning: hello world! (init)

W hello_world 00:00:34 69/hello_world_init#40: Warning: hello world! (start)

Press ENTER to get started

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 59 of 68



vtss_appl/hello_world/hello_world.cxx

1 #include "hello_world_trace.h"
2 #include "vtss_trace_api.h"
3 #include "critd_api.h" 5

4
5 #define VTSS_ALLOC_MODULE_ID VTSS_MODULE_ID_HELLO_WORLD
6
7 staticstatic critd_t hello_world_crit; 2

8
9 #if (VTSS_TRACE_ENABLED)

10 staticstatic vtss_trace_reg_t trace_reg =
11 {
12 /*.module_id = */VTSS_TRACE_MODULE_ID,
13 /*.name      = */"hello_world",
14 /*.descr     = */"example"
15 };
16
17 staticstatic vtss_trace_grp_t trace_grps[TRACE_HELLO_WORLD_GRP_CNT] =
18 {
19 /*[VTSS_TRACE_HELLO_WORLD_GRP_DEFAULT] = */{
20 /*.name      = */"default",
21 /*.descr     = */"Default",
22 /*.lvl       = */VTSS_TRACE_LVL_WARNING,
23 /*.flags     = */1,
24 },
25 /*[VTSS_TRACE_HELLO_WORLD_GRP_CRIT] = */{ 1

26 /*.name      = */"crit",
27 /*.descr     = */"critical regions",
28 /*.lvl       = */VTSS_TRACE_LVL_WARNING,
29 /*.flags     = */1,
30 },
31 };
32 #endif /* VTSS_TRACE_ENABLED */
33
34 structstruct Lock { 6

35 Lock(int line) { 7

36 critd_enter(&hello_world_crit, VTSS_TRACE_HELLO_WORLD_GRP_CRIT,
VTSS_TRACE_LVL_NOISE, __FILE__, line);
37 T_WG(VTSS_TRACE_HELLO_WORLD_GRP_CRIT, "Entering scoped lock\n\n");
38 }
39 ~Lock() { 8

40 critd_exit(&hello_world_crit, VTSS_TRACE_HELLO_WORLD_GRP_CRIT,
VTSS_TRACE_LVL_NOISE, __FILE__, 0);
41 T_WG(VTSS_TRACE_HELLO_WORLD_GRP_CRIT, "Exiting scoped lock\n\n");
42 }
43 };
44 #define HELLO_WORLD_CRIT_ASSERT_LOCKED() critd_assert_locked(&hello_world_crit,
TRACE_HELLO_WORLD_GRP_CRIT, __FILE__, __LINE__)
45 #define CRIT_SCOPE() Lock __lock_guard__(__LINE__)
46
47 /* Initialize module */
48 vtss_rc hello_world_init(vtss_init_data_t *data)
49 {
50 vtss_isid_t isid = data->isid;
51 vtss_rc rc = VTSS_OK;

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 60 of 68



Add the new trace macro and increment the TRACE_HELLO_WORLD_GRP_CNT:

vtss_appl/hello_world/hello_world_trace.h

Although it is entirely optional, we add one more trace group devoted to the critical
sections as seen in the updated trace_grps 1 (This is accompanied by a respective
change in the hello_world_trace.h file to reflect the newly added trace group).
We then create a mutex called hello_world_crit 2 which we initialize using the
critd_init() function as seen in 3 , 4 . Note that we also include the critd_api.h
5 .

52
53 ifif (data->cmd == INIT_CMD_INIT) {
54 /* Initialize and register trace resources */
55 VTSS_TRACE_REG_INIT(&trace_reg, trace_grps, TRACE_HELLO_WORLD_GRP_CNT);
56 VTSS_TRACE_REGISTER(&trace_reg);
57 }
58 switchswitch (data->cmd) {
59 casecase INIT_CMD_INIT:
60 critd_init(&hello_world_crit, "hello_world.crit",
VTSS_MODULE_ID_HELLO_WORLD, VTSS_TRACE_MODULE_ID, CRITD_TYPE_MUTEX); 3

61 critd_exit(&hello_world_crit, VTSS_TRACE_HELLO_WORLD_GRP_CRIT,
VTSS_TRACE_LVL_NOISE, __FILE__, __LINE__); 4

62
63 printf("%s\n\n", "Hello World!");
64 T_W("hello world! (init)\n\n");
65 breakbreak;
66 casecase INIT_CMD_START:
67 T_W("hello world! (start)\n\n");
68 breakbreak;
69 casecase INIT_CMD_CONF_DEF:
70 breakbreak;
71 casecase INIT_CMD_MASTER_UP:
72 { CRIT_SCOPE(); } 9

73 breakbreak;
74 casecase INIT_CMD_MASTER_DOWN:
75 breakbreak;
76 casecase INIT_CMD_SWITCH_ADD:
77 breakbreak;
78 casecase INIT_CMD_SWITCH_DEL:
79 breakbreak;
80 defaultdefault:
81 breakbreak;
82 }
83 returnreturn rc;
84 }

1 #define VTSS_TRACE_HELLO_WORLD_GRP_CRIT 1
2 #define TRACE_HELLO_WORLD_GRP_CNT 2
3
4 #endif /* _HELLO_WORLD_TRACE_H_ */

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 61 of 68



The mutex is now ready to use, and the critd_api.h provides us with the
critd_enter() and critd_exit() interfaces for locking and unlocking the mutex.
However, this can be simplified even more with scope locking. In 6 , we use a C++
structure’s contructor 7 and destructor 8 to do the locking and unlocking for us.
Then we simply lock a section by instantiating a variable of this structure 9 . One of
the benefits of this method is that unlocking of the mutex will happen automatically
when the program goes out of the locked scope.

Finally, make a build using the new hello_world.cxx and load it into the device.
Check that you see the following output, thus verifying that the scope locking works
as expected.

7.4.3.7. Frame flow
Most applications that implement L2/L3 protocols will need to set-up some basic
frame flow for receiving/transmitting packets as part of their implementation. This
section briefly illustrates the key interfaces for setting up frame flow within a custom
module.

7.4.3.7.1. Frame reception

The packet module is responsible for distributing received frames to the other
application modules, therefore a custom module needs to register itself to the packet
module in order to receive frames. All the needed interfaces for the packet module
are declared in the library packet_api.h which is found in vtss_appl/packet/
packet_api.h . Let’s see an example registration using the existing hello_world
program:

00:00:01 Stage 1 booted
00:00:01 Using device: /dev/mtd7
00:00:09 Mounted /dev/mtd7
00:00:09 Loading stage2 from RAM
00:00:10 Stage2 ends at 0x772bfce6, offset 00875ce6
00:00:10 Overall: 9795 ms, ubifs = 8333 ms, rootfs 1391 ms of which xz = 0 ms of
which untar = 0 ms
Starting application...
Using existing mount point for /switch/
Hello World!
W hello_world 00:00:32 66/hello_world_init#64: Warning: hello world! (init)

W hello_world 00:00:34 69/hello_world_init#67: Warning: hello world! (start)

W hello_world/crit 00:00:35 69/Lock#37: Warning: Entering scoped lock

W hello_world/crit 00:00:35 69/~Lock#41: Warning: Exiting scoped lock

Press ENTER to get started

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 62 of 68



vtss_appl/hello_world/hello_world.cxx

1 //...
2 #include "packet_api.h" 1

3
4 //...
5
6 vtss_mac_addr_t dmac = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
7
8 staticstatic BOOL hello_world_packet_rx(void *contxt, constconst uchar *constconst frm, constconst

mesa_packet_rx_info_t *constconst rx_info) 2

9 {
10 // Example of packet processing
11 ifif (!memcmp(&frm[0], dmac, 6)) {
12 T_D("hello world just received a frame!\n\n");
13 // Further processing...
14 returnreturn VTSS_RC_OK;
15 }
16
17 // Don't do anything, packet is discarded
18 returnreturn VTSS_RC_OK;
19 }
20
21 staticstatic void hello_world_packet_register(void) 3

22 {
23 packet_rx_filter_t rx_filter; 4

24 void *rx_filter_id;
25 vtss_rc rc;
26
27 packet_rx_filter_init(&rx_filter); 5

28 rx_filter.modid = VTSS_MODULE_ID_HELLO_WORLD;
29 rx_filter.cb = hello_world_packet_rx;
30
31 memcpy(rx_filter.dmac, dmac, sizeofsizeof(rx_filter.dmac));
32 rx_filter.match = PACKET_RX_FILTER_MATCH_DMAC;
33 rx_filter.prio = PACKET_RX_FILTER_PRIO_NORMAL;
34
35 ifif ((rc = packet_rx_filter_register(&rx_filter, &rx_filter_id)) !=
VTSS_RC_OK) { 6

36 T_E("Failed to register packet rx!\n\n");
37 }
38 }
39
40 /* Initialize module */
41 vtss_rc hello_world_init(vtss_init_data_t *data)
42 {
43 vtss_isid_t isid = data->isid;
44 vtss_rc rc = VTSS_OK;
45
46 ifif (data->cmd == INIT_CMD_INIT) {
47 /* Initialize and register trace resources */
48 VTSS_TRACE_REG_INIT(&trace_reg, trace_grps, TRACE_HELLO_WORLD_GRP_CNT);
49 VTSS_TRACE_REGISTER(&trace_reg);
50 }
51 switchswitch (data->cmd) {
52 casecase INIT_CMD_INIT:

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 63 of 68



First we need to include the packet_api.h header as seen in 1 . Then we need
to create a callback function inside our module, which the packet module will call
when it needs to provide a frame. This function is seen in 2 and is responsible for
processing the frame inside the custom module. You can see a very basic example
code inside the hello_world_packet_rx() function. Then we create the
hello_world_packet_register() function, see 3 , that will do the registration with
the packet module. This function starts by declaring a rx_filter 4 which then
initializes using the packet_api.h function, packet_rx_filter_init() , see 5 . Then,
we have to configure the packet filter according to the needs, in this case we
demonstrate a simple filter that matches on destination MAC address of the received
frame. The last step after configuring the filter is to call the
packet_rx_filter_register() interface ( 6 ) that will register the filter with the
packet module. The registration must be made during the INIT_CMD_START stage as
seen in 7 .

7.4.3.7.2. Frame transmission

The l2proto module is responsible for transmitting frames created by the application
modules, therefore a custom module needs to utilize interfaces that the l2proto
module provides. All the needed interfaces are declared in the library l2proto_api.h
which is found in vtss_appl/l2proto/l2proto_api.h . Let’s see an example frame
transmission function using the existing hello_world program:

53 critd_init(&hello_world_crit, "hello_world.crit",
VTSS_MODULE_ID_HELLO_WORLD, VTSS_TRACE_MODULE_ID, CRITD_TYPE_MUTEX);
54 critd_exit(&hello_world_crit, VTSS_TRACE_HELLO_WORLD_GRP_CRIT,
VTSS_TRACE_LVL_NOISE, __FILE__, __LINE__);
55
56 printf("%s\n\n", "Hello World!");
57 T_W("hello world! (init)\n\n");
58 breakbreak;
59 casecase INIT_CMD_START:
60 T_W("hello world! (start)\n\n");
61 hello_world_packet_register(); 7

62 breakbreak;
63 casecase INIT_CMD_CONF_DEF:
64 breakbreak;
65 casecase INIT_CMD_MASTER_UP:
66 { CRIT_SCOPE(); }
67 breakbreak;
68 casecase INIT_CMD_MASTER_DOWN:
69 breakbreak;
70 casecase INIT_CMD_SWITCH_ADD:
71 breakbreak;
72 casecase INIT_CMD_SWITCH_DEL:
73 breakbreak;
74 defaultdefault:
75 breakbreak;
76 }
77 returnreturn rc;
78 }

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 64 of 68



vtss_appl/hello_world/hello_world.cxx

We start by including the l2proto_api.h header as seen in 1 . Then we create a
very basic transmit function, hello_world_tx() , see 2 . This function assumes that
we have already created a frame we would like to transmit, that is the argument
buffer , and we also know the transmit port l2port and the frame size size . The
buffer can be already created in another function, but it can always be manipulated
as seen inside this sample function, where we appoint a destination MAC address
to the frame. The actual frame transmission is a two step process; first we allocate
a transmit buffer using the vtss_os_alloc_xmit() interface as seen in 3 , and
then (after we fill that buffer with the actual frame we have prepared) call the
vtss_os_xmit() interface 4 that will now transmit the frame.

7.5. Custom flash images
WebStaX releases include a set of flash images that matches the different reference
boards. If a project has changed the flash components, or wishes to use other
components in the flash-images, then it is necessary to build custom flash images.
This section will provide the instruction on how to do that.

A prerequisite to this is to have a working boot-loader, application SW and knowledge
about the HW flash system.

This project uses an internal developed flash_build project to build these projects.
Start by downloading this project using git :

1 //...
2 #include "l2proto_api.h" 1

3
4 //...
5
6 mesa_mac_addr_t dmac = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
7
8 staticstatic void hello_world_tx(uint l2port, void *buffer, size_t size) 2

9 {
10 vtss_common_bufref_t bufref;
11 uchar *buf;
12
13 // Use the existing buffer, or edit it accordingly
14 // ...
15 /* fill destination MAC */
16 memcpy(buffer, dmac, 6);
17
18 buf = (uchar *)vtss_os_alloc_xmit(l2port, size, &bufref); 3

19 ifif(buf) {
20 memcpy(buf, buffer, size);
21 (void) vtss_os_xmit(l2port, buf, size, bufref); 4

22 }
23 }

1 $$ git clone http://github.com/vtss/flash_builder
2 $$ cd flash_builder

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 65 of 68



The script reads a template which specifies the flash layout, and points to the files
that provide the content for each partition.

The upstream flash_builder project includes support for all the different reference
boards supported by MSCC. Most customer projects do not need to build all these
flash images, and the easiest approach is therefore pick the configuration that is
closest to the given project and use that as a reference. This example will be using a
Jaguar2 board as reference:

Next step is to customize the template such that it matches the requirements of the
project. Here is what the example template looks like:

1 $$ cp templates/linux-jaguar2-cu48-32mb-64kb.txt templates/custom.txt

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 66 of 68



If changes to the capacity and blocksize are needed, we suggest to start by picking
a template that matches the new capacity and blocksize . The templates directory
contains several useful templates. Then you can change the sizes of the flash sections
and optionally update the datafile pointers (do not change the last three partitions,
these are needed by RedBoot). If no template exists that will fit your needs, then the
capacity and blocksize have to be updated manually such that they match the NOR
flash mounted on the target device.

# Flash template: linux-jaguar2-cu48-32mb-64kb
# The first section describe the flash geometry: capacity, blocksize
---
- capacity: 32M

blocksize: 64K
#
# Subsequent sections describe individual flash sections:
#  - name: The FIS name. 1 to 15 characters
#  - size: Flash section size. Units 'M' or 'K'
#  - flash: Hex address of section
#  - entry: Hex address of execution entrypoint (optional)
#  - memory: Hex address of memory load address (optional)
#  - datafile: File name to load data from (optional)
#
- name: 'RedBoot'

size: 256K
flash: 0x40000000
datafile: artifacts/redboot-jaguar2.img

- name: 'conf'
size: 64K
flash: 0x40040000

- name: 'linux'
size: 16128K
flash: 0x40050000
memory: 0x80100000
entry: 0x80100000
datafile: artifacts/bringup_jr2_48.mfi

- name: 'linux.bk'
size: 16128K
flash: 0x41010000
memory: 0x80100000
entry: 0x80100000
datafile: artifacts/bringup_jr2_48.mfi

- name: 'FIS directory'
size: 64K
flash: 0x41fd0000

- name: 'RedBoot config'
size: 4K
flash: 0x41fe0000
datafile: files/fconfig-linux.bin

- name: 'Redundant FIS'
size: 64K
flash: 0x41ff0000

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 67 of 68





The last three sections of the template depend directly on the
capacity and blocksize values. If these values are changed on an
existing template, then the size and flash values of the last three
sections have to be altered as well. Unless you know the needed
values, we suggest to use one of the existing templates in order to
avoid such changes.

When the template is updated, make sure that all datafile artifacts exist; the linux
and linux.bk is built from the WebStaX sources (see Using a build configuration),
and the RedBoot image is built from the RedBoot sources (see Building RedBoot from
sources). Move those files into directory called 'artifacts'.

Final step is to build the custom flash image:

The resulting custom.bin can now be programmed to the NOR flash using a
programmer. This is covered in section Flashing the NOR with a flash image.

8. References
[]

AN1163 Linux Customizations

1 $$ ls -la artifacts
2 total 4548
3 drwxrwxr-x 2 anielsen anielsen    4096 Aug 22 16:20 .
4 drwxr-xr-x 9 anielsen anielsen    4096 Aug 22 16:21 ..
5 -rw-rw-r-- 1 anielsen anielsen 4449541 Aug 22 16:39 bringup_jr2_48.mfi
6 -rw-rw-r-- 1 anielsen anielsen  195056 Aug 22 16:39 redboot-jaguar2.img

1 $$ perl -w ./buildflash.pl --verbose templates/custom.txt
2 Completed custom
3 $$ ls -lah images
4 total 33M
5 drwxrwxr-x 2 anielsen anielsen 4.0K Aug 22 16:41 .
6 drwxr-xr-x 9 anielsen anielsen 4.0K Aug 22 16:21 ..
7 -rw-rw-r-- 1 anielsen anielsen  32M Aug 22 16:40 custom.bin

UG1068 - SW Introduction to WebStaX under Linux User Guide

2017-12-15 Confidential Page 68 of 68


	SW Introduction to WebStaX under Linux
	1. Introduction
	1.1. Audience
	1.2. Prerequisites

	2. Component overview
	2.1. BSP
	2.2. API
	2.3. Application
	2.4. Boot-loader
	2.5. Flash images

	3. Integration options
	3.1. MSCC-Application or API-Only
	3.2. Internal CPU or External CPU
	3.2.1. Frame flow with an external CPU
	3.2.1.1. CPU frames over PCI-E
	3.2.1.2. Dedicated NPI port


	3.3. MSCC-BSP or custom BSP

	4. Brief system architecture
	4.1. Frame flow
	4.2. System services
	4.3. Boot sequence
	4.3.1. Image split
	4.3.2. ServiceD as init process


	5. Installing SW on a target
	5.1. Installing SW from scratch - How to flash a board
	5.1.1. Flashing the NOR with a flash image
	5.1.2. Bootstrapping

	5.2. Upgrading SW from within an existing installation

	6. Setting up development environment
	6.1. Using single-target build configuration makefiles
	6.2. Using multi-target build configuration makefiles

	7. Customizing SW
	7.1. Customizing the BSP
	7.1.1. BSP Stages
	7.1.2. Adding a package
	7.1.3. Using the new BSP

	7.2. Customizing the Linux Kernel
	7.3. Customizing RedBoot
	7.3.1. Installing required tools
	7.3.2. Building RedBoot from sources
	7.3.3. Changing the RedBoot sources
	7.3.4. Installing a new bootloader

	7.4. Customizing the Application
	7.4.1. External process
	7.4.2. Build configurations
	7.4.2.1. Using a build configuration
	7.4.2.2. Customizing build configurations
	7.4.2.2.1. Defining target configurations
	7.4.2.2.2. Customizing MEBA layer
	7.4.2.2.3. Controlling application modules
	7.4.2.2.4. Customizing preprocessor variables
	7.4.2.2.5. Customizing single image configuration makefile
	7.4.2.2.6. Customizing multi image configuration file


	7.4.3. Adding a custom module to the Application
	7.4.3.1. Creating a makefile
	7.4.3.2. Creating a source directory
	7.4.3.3. Adding the module to the build
	7.4.3.4. Adding management interfaces
	7.4.3.4.1. ICLI
	7.4.3.4.2. Web
	7.4.3.4.3. SNMP and JSON-RPC

	7.4.3.5. Trace system
	7.4.3.6. Locking
	7.4.3.7. Frame flow
	7.4.3.7.1. Frame reception
	7.4.3.7.2. Frame transmission



	7.5. Custom flash images

	8. References


