
.
ENT-AN1184-4.3 Application Note

Brief Introduction to WebStaX SW
Architecture

Released

March 2018

Contents

1 Revision History...1

2 Introduction...2

3 Component Overview..3
3.1 Board Support Packet (BSP)..3
3.2 MESA/Unified-API...3
3.3 Application..3
3.4 Flash Images...4

4 Integration with Linux..5
4.1 Frame Flow...5
4.2 System Services..6
4.3 Boot Sequence..6

4.3.1 The Modular Image Format...7
4.3.2 ServiceD as init Process...7

5 Software Customization Options...8
5.1 WebStaX Application Customization..8
5.2 Interface/Management Customization...8
5.3 GUI Adjustments/Replacement..8
5.4 Third Party Daemons..8

6 HW Integration Options...9
6.1 Frame Flow with an External CPU...9

7 Alternatives to WebStaX..10

iiVPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Contents

Tables

Table 1 • Collection of Software Modules in WebStaX Product Family..3

iiiVPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Tables

Figures

Figure 1 • Overall System Architecture...5
Figure 2 • Boot Process..6

ivVPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Figures

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed
by revision, starting with the most current publication.

Revision 1.1
Revision 1.1 was published in March 2018. In revision 1.1, the document was updated to condense the
information to an overview of the overall architecture. Detailed information is now located in UG 1068 SW
Introduction to WebStaX under Linux, which can be found in the doc directory of the software installation.

Revision 1.0
Revision 1.0 was published in August 2017. It was the first publication of this document.

1VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Revision History

2 Introduction

This document offers a brief introduction to WebStaX, its design, and how to customize and integrate it.
More detailed information can be found in the product specification and throughout the various user and
configuration guides.

2VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Introduction

3 Component Overview

WebStaX is a collection of many different SW components, which are combined into a product that targets
the end-user. This collection of SW includes both third-party and internal developed SW, and it also includes
both proprietary and open-source SW.

This means that the WebStaX product includes a fair amount of SW developed for this specific purpose,
but it also includes third-party SW that has been carefully selected, integrated, and in some cases patched
and tested as a single product.

When new versions of WebStaX (updates) are being released, it typically updates all the components used
in WebStaX, while offering a mechanism to install the upgrades. Each release of WebStaX includes a list of
all third-party SW included, and specifies the versions and license terms for each third-party SW packet.

The following subsections list all the main components that constitute the WebStaX product.

3.1 Board Support Packet (BSP)
The BSP provides the following third-party components.
• Development tools needed to build the executable application file (such as cross-compiler, cmake,

linker, and automake/autoconf).
• Third-party components needed on target (such as Linux kernel, libc, net-snmp, dropbear, and busybox).

Microsemi provides a BSP that is designed and optimized for Microsemi reference boards along with the
WebStaX application software. The BSP is distributed both as source and binary. The sources are needed
for customers who need to change the BSP, while the binary BSP can be used if no changes are required.
More details can be found in UG1068, which is shipped with SDK (CEServices\docs).

3.2 MESA/Unified-API
The MESA/Unified-API is a library used to access the switch or PHY hardware. The API is included as part
of the application software. Customers, that are building a product based onWebStaX variants, automatically
use the API included in the WebStaX source package.

The API provides an abstraction layer so that the application does not need to be aware of the register set
provided by a single chip, allowing the application to support many different switch cores. More details
can be found in UG1070, which is shipped with SDK (CEServices\docs).

3.3 Application
The WebStaX product family includes four different application packages: WebStaX, SMBStaX, IStaX, and
CEServices. The four packages have different feature sets and licensing terms. This document does not
focus on the individual packages, but it assumes that one of the four packages is being used.When referring
to MSCC-Application, application or switch application, then it is one of these four packages.

The application is a collection of SWmodules that can be divided into the following categories listed in the
table:
Table 1 • Collection of Software Modules in WebStaX Product Family

DescriptionModules

Allows the user to apply static configuration and/or query status. Such modules typically use the MESA
library to configure the switch-HW accordingly. Examples of such modules are: port, acl, vlan, and evc.

Control modules

3VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Component Overview

DescriptionModules

Allows the user to enable/configure protocols that can interact with other network equipment. Such
modules typically listen for certain network packets and transmit packets according to the specification
of the protocols. Example of such modules are: gvrp, lldp, and ptp.

Protocol modules

Provides management interface that can be used to configure and/or query status of switch. Example of
such modules are: cli, ssh, snmp, json-rpc, and web.

Interface modules

This is a set of modules that are not directly visible to the user, but provide some infrastructure facilities
used by SW running on the switch. Examples of such modules are: basics (algorithms and containers),
critd (mutex and dead lock detection), and trace (debug facilities).

Infrastructure mod-
ules

The application SW is organized in suchway that eachmodule can be enabled/disabled in the build process,
and new modules can easily be added.

Note:

Some of the application modules have internal dependencies that must be considered
when enabling/disabling modules. Not all combinations have been tested, and certain
combinations may lead to compilation errors.

3.4 Flash Images
A flash image is a binary image that may be burned to the NOR flash using a programmer. The flash images
include a partition table for the NOR flash, bootloader, and bring-up image (Linux kernel, stage1 file system,
and stage2 minimal). A flash image may only be used on the specific board for which it is designed.

4VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Component Overview

4 Integration with Linux

This section provides a brief overviewof the systemarchitecture and goes into somedetails on howWebStaX
is integrated with the Linux OS. The following illustration shows the overall system architecture.

Figure 1 • Overall System Architecture

The green box-labeled WebStaX is the MSCC switch application, it can be any of the supported variants
(WebStaX, SMBStaX, IStaX, or CEServices). The switch application is running as a long-lived, normal user-space
process (as root), and it is interacting with the switch registers through the uio driver. The WebStaX
application includes an instance of the API (linked in as a library). The application must be the exclusive
owner of the API and switch registers.

Note:

This means that no other process is allowed to instantiate the API or alter the switch
registers in HW. Each process must go through the API instance already created by the
application. Other processes can communicatewith theWebStaX application and indirectly
access the API through the WebStaX process).

The uio kernel space driver is a simple kernel module that does the following two things.
• Exposes the entire register region of the switch hardware.
• Exposes all interrupts from the switch HW.

Theuio kernel module is provided by the Linux kernel (part of the BSP) and allows user-space applications,
like WebStaX, to gain access to HW registers and interrupt from user-space. This is achieved by a mmap of
the register region from the user-space application.

4.1 Frame Flow
Besides configuring the switch registers in HW, the application also implements a number of protocols
(which may influence the switch configurations). To implement these protocols, the application needs to
inject frames into the switch core, and it needs to extract frames that have been redirected to the CPU
(either because it was sent to theMAC address of the CPU, or because an ACL rule has captured the frame).
To implement this frame-flow, the Linux kernel in the BSP provides a FDMA driver that can inject/extract
to/from the CPU queue in the switching hardware.

Frames that are injected/extracted to/from the CPU queue are prefixed with an extra header that carries
various side-band information related to the frame (front port, classified VLAN, ACL rule number, time
stamp, and so forth). The content of the header is chip dependent, and the content is specified in the data

5VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Integration with Linux

sheet of the switching chip. This information is needed by the application to implement most of the L2
protocols, but it also causes a problem when the frame is being processed through the Linux IP stack (as
the kernel does not know inter-frame-header). To solve this, received frames are being exposed both on a
Linux network interface called ifh (short for interface frame header) and to the MUX-Filter (see Figure
1 on page 5).

The MUX-Filter sees all the frames being received by the CPU queue in the switching hardware. The
driver decodes the frame header to see which classified VLAN a given frame belongs to, and if such an
interface exists, then the switch dependent frame header is popped and the frame is being processed by
the Linux IP stack. The MUX-Filter is configured by the user-space application using the netlink
protocol, and this configuration channel allows the application to dynamically create and delete IP interfaces
that correspond to a VLAN domain. These types of interfaces are being referred to as VLAN interfaces.

This design allows the user-space applications to implement various L2 protocols and have access to all the
side-band data collected by the switch-core. It also allows existing Linux applications to do various socket
operations (IP, UDP, and TCP) without changing these applications.

4.2 System Services
The WebStaX application listens on a number of TCP/UDP ports, and it creates a number of third-party
services. The list of TCP/UDP ports and third-party services depends on the variant (WebStaX, SMBStaX,
IStaX, or CEServices). One of the examples of listening ports is TCP port 23 that the application listens on
in order to implement telnet. One of the examples of third-party services is hiawatha, which is being
used as web-server and net-snmp as SNMP master agent.

The external services needed by theWebStaX application are automatically started by the application itself.
The application also offers configuration hooks that can stop a given service, if the user does not wish to
use it.

4.3 Boot Sequence
The boot sequence of a WebStaX system differs from general purpose Linux systems because it starts by
booting from NOR, and when the kernel is up, it mounts the NAND flash as its root file system. The system
also uses a custom init process called ServiceD. The following illustration shows the boot process of
a WebStaX system.

Figure 2 • Boot Process

6VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Integration with Linux

4.3.1 The Modular Image Format
The image format used in WebStaX is called modular firmware images (mfi), and it is designed such that
more file-system images can be appended. When the system is booted, the union of all the appended
filesystems is presented as the root-file system.

When booting, the init process iterates through each section in the mfi files and mounts each root file
system element on top of each other by using the OverlayFS facilities in the Linux kernel. Once this
process is completed, the final root-file system is ready, and the boot process continues from the freshly
prepared root file system.

Note:

The mfi format allows the different root file system elements to be placed in either NOR
or NAND flash.

4.3.2 ServiceD as init Process
When the final root file system is ready, the system initializes all the services that need to be running. The
ServiceD application is used to perform this task. The ServiceD process reads its configuration files (see
ServiceD Conf WebStaX, and ServiceD Conf Customer process in the Figure 1 on page 6), creates, and
monitors the configured services. In a vanillaWebStaX system, there is only one service calledswitch_app,
which represents the WebStaX application. When the application is started, it automatically starts the set
of services it depends on.

Note:

ServiceD is not the same as systemd. ServiceD is the init process developed byMicrosemi.
See ENT-AN1163 for more details.

7VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Integration with Linux

5 Software Customization Options

WebStax offers a wide range of facilities to allow various customizations. The following is a list of regularly
used customization facilities.

5.1 WebStaX Application Customization
The WebStaX application consists of a number of modules. The building system allows to disable certain
modules, if needed (inter module dependency exists and needs to be considered when doing so).

Customers can also addmodules of their own and integrate them as part of the existing product. This allows
to extend the existing facilities and still provide the end-user with a unified stream line set of interfaces.

5.2 Interface/Management Customization
All configuration, status, and control in the WebStaX application is exposed as a JSON-RPC interface. This
JSON-RPC interface can either be accessed through a HTTP(S) connection (allowing remote access/control),
or by using an IPC pipe (to control WebStaX from a local process).

This JSON-RPC interface allows to create other interfaces and/or network management systems.

5.3 GUI Adjustments/Replacement
TheWebStaX application includes aweb, front-endwritten in html/java-script. This interface can be adjusted
with other colors, logos, and so forth. Also, the entire web interface can be replaced with an alternative
GUI that uses the JSON-RPC interface.

5.4 Third Party Daemons
Third-party daemons can be added to themfi images and can be started by the ServiceD-init process. Such
daemons can either be open-source or proprietary. Third-party daemons can use the existing L3 interfaces
to communicate with the outside world, and/or us the JSON-IPC facilities to access the switch facilities
through the WebStaX application.

8VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Software Customization Options

6 HW Integration Options

TheMSCC switch chips include an internal CPU that can be used to run the switch application. But, it is also
possible to do a board design that uses an external CPU instead.

Customers have to choose whether they want to use the internal CPU or if they prefer an external CPU.
Arguments for choosing an external CPU exist, if more CPU resources are needed, or that an alternative
CPU architecture is required.

Customers that choose to do a project with an external CPU,must also provide the BSP for the given project.
The MSCC source BSP can be adjusted to support most CPU architectures, or a custom made BSP can be
designed from scratch.

The preferred way of reaching the registers from an external CPU is by using PCI-e. The alternative option
is SPI.

6.1 Frame Flow with an External CPU
Projects using an external CPU need to decide how to implement the frame-flow between the switch-core
and the host CPU. There are two options: either use PCI- Express or dedicate one of the switch ports for
the purpose.

9VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

HW Integration Options

7 Alternatives to WebStaX

Customers that does not want to use WebStaX for specific reasons are welcome to use an alternative
SW-Stack. Such projects should integrate the Unified-API/MESA with the alternative SW-Stack and may
optionally be using the BSP.

10VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Alternatives to WebStaX

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor doesMicrosemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunctionwithmission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyermust conduct
and complete all performance and other testing of the products, alone and together with, or
installed in, any end-products. Buyer shall not rely on any data and performance specifications or
parameters provided by Microsemi. It is the Buyer's responsibility to independently determine
suitability of any products and to test and verify the same. The information provided byMicrosemi
hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any
party any patent rights, licenses, or any other IP rights, whether with regard to such information
itself or anything described by such information. Information provided in this document is
proprietary toMicrosemi, andMicrosemi reserves the right tomake any changes to the information
in this document or to any products and services at any time without notice.

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2019 Microsemi. All rights reserved.
Microsemi and the Microsemi logo are
trademarks of Microsemi Corporation. All
other trademarks and service marks are the
property of their respective owners.

Microsemi, awholly owned subsidiary ofMicrochip Technology Inc. (Nasdaq:MCHP),
offers a comprehensive portfolio of semiconductor and system solutions for
aerospace&defense, communications, data center and industrialmarkets. Products
include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard
for time; voice processing devices; RF solutions; discrete components; enterprise
storage and communication solutions; security technologies and scalable anti-tamper
products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as
custom design capabilities and services. Microsemi is headquartered in Aliso Viejo,
California, and has approximately 4,800 employees globally. Learn more at
www.microsemi.com.

VPPD-04465

11VPPD-04465 ENT-AN1184-4.3 Application Note Revision 1.1

Legal

	Contents
	Tables
	Figures
	1 Revision History
	2 Introduction
	3 Component Overview
	3.1 Board Support Packet (BSP)
	3.2 MESA/Unified-API
	3.3 Application
	3.4 Flash Images

	4 Integration with Linux
	4.1 Frame Flow
	4.2 System Services
	4.3 Boot Sequence
	4.3.1 The Modular Image Format
	4.3.2 ServiceD as init Process

	5 Software Customization Options
	5.1 WebStaX Application Customization
	5.2 Interface/Management Customization
	5.3 GUI Adjustments/Replacement
	5.4 Third Party Daemons

	6 HW Integration Options
	6.1 Frame Flow with an External CPU

	7 Alternatives to WebStaX

